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Introduction

�

�

I . Simon [1987]; the same point has been made by Krugman [1994: xi-xlii].
2. This is to be distinguished from the very different problem of determining what rules

are actually employed by individual humans, a topic studied in experimental economics
and other fields of behavioral science.

3. A recent statement of this basic concern is Aaron [1994].
4. Kirman [1992] makes this point forcefully.

�

Herbert 

Simon is fond of arguing that the social sciences are, in fact,
the Hhard" sciences.l For one, many crucially important social

process es are complex. They are not neatly decomposable into separate
sub process es- economic , demo graphic, cultural , spatial- whose isolated 

analyses can be aggregated to give an adequate analysis of the social

process as a ~ hole. And yet, this is exactly how social science is organized
, into more or less insular departments and journals of economics,

demography, political science, and so forth . Of course, most social scientists 
would readily agree that these divisions are artificial . But, they

would argue, there is no natural methodology for studying these

process es together, as they co evolve.

The social sciences are also hard because certain kinds of control led

experimentation are hard. In particular, it is difficult to test hypotheses
concerning the relationship of individual behaviors to macroscopic reg-

ularities, hypotheses of the form : If individuals behave in thus and such
a way- that is, follow certain specific rules - then society as a whole will
exhibit some particular property. How does the heterogeneous microworld 

of individual behaviors generate the global macroscopic regulari-

ties of the society?
2

Another fundamental concern of most social scientists is that the
rational actor- a perfectly infonned individual with infinite computing
capacity who maximizes a fixed (nonevolving ) exogenous utility function

- bears little relation to a human being.3 Yet, there has been no natural 

methodology for relaxing these assumptions about the individual .

Relatedly, it is standard practice in the social sciences to suppress real-

world agent heterogeneity in model-building . This is done either

explicitly, as in representative agent models in macroeconornics,4 or



implidtly , as when highly aggregate models are used to represent social

process es. While such models can offer powerful insights, they 
I I filter

out" all consequences of heterogeneity. Few social scientists would deny
that these consequences can be crucially important , but there has been

no natural methodology for systematically studying highly heterogeneous 

populations.

Finally, it is fair to say that, by and large, social sdence, espedally

game theory and general equilibrium theory, has been preoccupied with

static equilibria , and has essentially ignored time dynamics. Again, while

granting the point , many sodal scientists would claim that there has

been no natural methodology for studying nonequilibrium dynamics in

sodal systems.

We believe that the methodology developed here can help to overcome 

these problems. This approach departs dramatically from the traditional 

disciplines, first in the way specific spheres of social

behavior- such as combat, trade, and cultural transmission- are treated

, and second in the way those spheres are combined.

"
.Artificial

We apply agent-based computer modeling techniques to the study of

human social phenomena, including trade, migration , group formation ,
combat, interaction with an environment , transmission of culture, propagation 

of disease, and population dynamics. Our broad aim is to begin
the development of a computational approach that permits the study of

these diverse spheres of human activity from an evolutionary perspective 
as a single social science, a transdisdpline subsuming such fields as

economics and demography.

This modeling methodology has a long lineage. Beginning with von

Neumann's work on self-reproducing automata [1966], it combines elements 

of many fields, including cybernetics (for example, Ashby [1956],
Wiener [ 1961] ), connectionist cognitive science (for example,

Rumelhart and McClelland [ 1986] ), distributed artificial intelligence

(for example, Gasser and Huhns [ 1989] ), cellular automata (for example

, Wolfram [1994], Toffoli and Margolus [1987], Gutowitz [1991] ),

genetic algorithms (for example, Holland [1992] ), genetic programming

(Koza [1992, 1994] ), artificial life (for example, Langton [1989, 1992,

1994], Langton et al. [ 1992], Brooks and Maes [1994] ), and individual -

based modeling in biology (for example, Haefner and Crist [1994] and

2 INTRODUCTION
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Crist and Haefner [1994] ). However, there have been very few attempts
to bring these literatures to bear on social science.5

The first concerted attempts to apply, in effect, agent-based computer
modeling to social science explicitly are Thomas Schelling

's. In a classic

series of papers-
"Models of Segregation

" 
[1969], liOn the Ecology of

Micromotives " 
[ 1971a], and N 

Dynamic Models of Segregation
"

[ 1971b]- and later in the book Micromotives and Macrobehavior [1978],

Schelling anticipated many of the themes encountered in the contemporary 

literature on agent-based modeling, social complexity, and eco-

nomic evolution . Among other things, Schelling devised a simple
spatially distributed model of the composition of neighborhoods, in

which agents prefer that at least some fraction of their neighbors be of
their own "color." He found that even quite color-blind preferences produced 

quite segregated neighborhoods.6

But Schelling
's efforts were constrained by the limited computational

power available at that time . It is only in the last decade that advances

in computing have made large-scale agent-based modeling practical.

Recent efforts in the social sciences to take advantage of this new capability 
include the work of Albin and Foley [1990], Arifovic [ 1994],

Arifo ~ c and Eaton [1995], Arthur [1991, 1994], Arthur et al. [ 1994],
Axelrod [1993, 1995], Carley [1991], Daniel son [1992, 1996], Gilbert

and Doran [1994], Gilbert and Conte [1995], Holland and Miller [1991],
Kollman , Miller , and Page [ 1992, 1994], Marimon , McGrattan, and

Sargent [1990], Marks [1992], Nagel and Rasmussen [1994], Tesfatsion

[1995], and Vriend [1995] . Additionally , computer scientists interested

in questions of distributed artificial intelligence (DAI ), decentralized

decisionmaking, and game theory have been actively researching multiagent 

systems. Important work here includes that of Huberman and

coworkers (Huberman [1988], Huberman and Glance [1993, 1996],
Glance and Huberman [ 1993, 1994a, 1994b], Huberman and Hogg

[1995], Youssefmir and Huberman [1995] ), Maes [1990], Miller and

Drexler [1988], and Resnick [1994] . Biologists have even built models

in which a population of agents representing humans exploits ecological
resources (Bousquet, Cambier, and Morand [1994] ).

In what follows we shall refer to agent-based models of social pro-

I N T ROD U Cn ON 3
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5. An important exception is Steinbruner's The Cybernetic Theory of Decision [1974].
6. Related work includes that of Vandell and Harrison [1978].



cesses as artificial societies! In this approach fundamental social structures

and group behaviors emerge from the interaction of individuals operating 
in artificial environments under rules that place only bounded

demands on each agent
's information and computational capacity. We

view artificial societies as laboratories, where we attempt to Ngrow
" certain 

social structures in the computer- or in silico- the aim being to

discover fundamental local or micro mechanisms that are sufficient to

generate the macroscopic social structures and collective behaviors of

interest.8

In general, such computer experiments involve three basic ingredients
: agents, an environment or space, and rules. A brief word on these

may be in order before discussing the particular artificial society presented 
in this book.

Agents

Agents are the Npeople
" of anifidal societies. Each agent has internal

states and behavioral rules. Some states are fixed for the agent
's life,

while others change through interaction with other agents or with the

e.xternal environment . For example, in the model to be described below,
an agent

's sex, metabolic rate, and vision are fixed for life. However,
individual economic preferences, wealth, cultural identity, and health

can all change as agents move around and interact. These movements,
interactions, changes of state all depend on rules of behavior for the

agents and the space.

7. This tenn apparently originates with Builder and Banks [1991]; see also Bankes [ 1994].

8. So-called micro-simulation techniques, developed by sodal sdentists at the dawn of

the modem computer era, are philosophically similar to agent-based approach es insofar as

both attempt to model sodal phenomena in a highly disaggregated way. An early pioneering 
work of this type is Orcutt eta/. [ 1961], who wrote :

Our socioeconomic system is a complicated structure containing millions of interacting units, such
as individuals, households, and firms. It is these units which actually make decisions about spending 

and saving, investing and producing, marrying and having children. It seems reasonable to

expect that our predictions would be more successful if they were based on knowledge about
these elemental decision-making units- how they behave, how they respond to changes in their
situations, and how they interact.

In comparison to agent-based modeling, micro-simulation has more of a Ntop-down " character 

since it models behavior via equations statistically estimated from aggregate data, not

as resulting from simple local rules.

I N T R O Ducn ON
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Life in an artificial society unfolds in an environment of some sort. This

could be landscape, for example, a topography of renewable resource

that agents eat and metabolize. Such a landscape is naturally modeled as

a lattice of resource-bearing sites. However, the environment , the medium 

over which agents interact, can be a more abstract structure, such as

a communication network whose very connection geometry may

change over time. The point is that the "environment " is a medium separate 
from the agents, on which the agents operate and with which they

interact.

Rules

Finally, there are rules of behavior for the agents and for sites of the

environment . A simple movement rule for agents might be: Look

around as far as you can, find the site richest in food, go there and eat

the food. Such a rule couples the agents to their environment . One

could think of this as an agent-environment rule. In turn , every site of the

lands<::,ape could be coupled to its neighbors by cellular automata (see

below) rules. For example, the rate of resource growth at a site could be

a function of the resource levels at neighboring sites. This would be an

environment-environment rule . Finally, there are rules governing agent-

agent interactions- mating rules, combat rules, or trade rules, for

example.

Object
-Oriented Implementation

Contemporary object-oriented programming (OOP) languages are particularly 
natural ones for agent-based modeling. Objects are structures

that hold both data and procedures. Both agents and environmental

sites are naturally implemented as objects. The agent
's data fields (its

instance variables) represent its internal states (for example, sex, age,

wealth ). The agent
's procedures (methods) are the agent

's rules of behavior 

(for example, eating, trading). This encapsulation of internal states and

rules is a defining characteristic of OOP and greatly facilitates the construction 

of agent-based models.9

INTRODUCTION 5
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9. For more on the software engineering aspects of artificial societies, see Appendix A.



Social Structures Emerge

Typically, we release an initial population of agent-objects into the simulated 
environment (a lattice of site-objects) and watch for organization

into recognizable macroscopic social patterns. The formation of tribes or
the emergence of certain stable wealth distributions would be examples.
Indeed, the defining feature of an artifidal society model is predsely that

fundamental social structures and group behaviors emerge from the interaction

of individual agents operating on artificial environments under rules that place
only bounded demands on each agent

's information and computational capacity.
The shorthand for this is that we Ngrow

" the collective structures I Ifrom
the bottom up."

garscape

In Chapter II we introduce the sugarscape, a spatial distribution , or landscape
, of generalized resource that agents like to "eat." The landscape

consists of variously shaped regions, some rich in sugar, some relatively
impoverished. Agents are born onto the sugarscape with a vision, a
metabolism, and other genetic attributes. In Chapter II their movement
is governed by a simple local rule. Paraphrasing, it amounts to the
instruction : "Look around as far as your vision permits, find the spot
with the most sugar, go there and eat the sugar.

" 
Every time an agent

moves, it 
"bums" some sugar- an amount equal to its metabolic rate.

Agents die if and when they bum up all their sugar.
A remarkable range of phenomena emerges from the interaction of

these simple agents. The ecological principle of carrying capadty- that a

given environment can support only some finite population- quickly
becomes evident . When "seasons" are introduced , migration is
observed. Migrators can be interpreted as environmental refuge es,
whose immigration boosts population density in the receiving zone,

6 I N T ROD U Cn ON

Life and Death on the So

The Sugarscape Model

While the "bottom-up
" 

approach to social science is quite general- as
discussed at greater length in our concluding chapter- the primary focus
of the present work is a particular instance of the artificial society concept 

that has come to be known as The Sugarscape Model. A brief sum-

~ ary of each chapter follows.



intensifying the competition for resources there- a dynamic with
"national security

" 
implications. Since agents are accumulating sugar at

all times, there is always a distribution of wealth- measured in sugar-

in the agent society. Does the wealth distribution mimic anything
observed in human societies? Under a great variety of conditions the distribution 

of wealth on the sugarscape is highly skewed, with most agents

having little wealth . Highly skewed distributions of income and wealth

are also characteristic of actual human societies, a fact first described

quantitatively by the nineteenth -century mathematical economist

Vilfredo Pareto.lo Thus we find the first instance of a qualitative similarity 

between extant human societies and artificial society on the

sugarscape.

A Compu Terrarium

As a practical matter, if such highly skewed wealth distributions are

immutable laws of nature, as some have claimed, then there is little

hope of greater economic equity in society. A tool like Sugarscape can

function as a kind of laboratory- a Compu Terrarium- where we alter

agent behavioral rules, such as those governing trade or inheritance, in

order to see how immutable this kind of distribution really is.

Agent Social Networks

Humans can be connected sodally in various ways: genealogically, culturally

, and economically, for example. Indeed, one of the things that

makes humans complicated, conflicted, and interesting is that they can

belong to many different communities, or sodal networks, at once.

These networks change over time. And, most interestingly, group loyalties 

can come into profound conflict, as when brothers (members of a

family group) fought each other (as members of competing political

groups) in the American Civil War. One theme that runs through this

entire book is soda I connection. In each chapter the local rules governing

agent behavior permit us to define certain kinds of agent social networks

. We represent such networks as graphs and track their evolution

over time and space. In particular, Chapter II explores social networks of

neighbors.

I N T R O Ducn ON 7
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10. See Persky [ 1992] for an overview of the so-called Pareto law.



Up to this point , collective phenomena have emerged from interactions 
within a single population of agents. In Chapter III we "grow

" distinct 
populations- cultural formations- of agents.

In the beginning, a small population of agents is randomly scattered
about a landscape. Purposeful individual behavior leads the most
capa~le or lucky agents to the most fertile zones of the landscape; these

migrations produce spatially segregated agent pools. Though less fortunate 
agents die on the wayside, for the survivors life is good: food is

plentiful, most live to ripe old ages, populations expand through sexual 

reproduction, and the transmission of cultural attributes eventually
produces spatially distinct "tribes." But their splendid isolation proves
unsustainable: populations grow beyond what local resources can support

, forcing tribes to expand into previously uninhabited areas. There
the tribes collide and interact perpetually, with penetrations, combat,
and cultural assimilation producing complex social histories, with violent 

phases, peaceful epochs, and so on.

This, then, is the social story we wish to "grow,
" from the bottom up. We

will need a number of behavioral ingredients, each of which generates
insights of its own .

The first ingredient of the proto -history is sexual reproduction. Like
other rules that agents execute in the model, the "sex code" is completely 

local and very simple. Yet a rich variety of demo graphic trajectories 
is observed. For instance, populations- and population densities on

the sugarscape- can fluctuate dramatically. Because mating is local,
reproduction can cease and the population can crash if population
becomes too sparse, or thin. Bottom up models such as Sugarscape suggest 

that certain cataclysmic events- like extinctions- can be brought
on endogenously, without external shocks (like meteor impacts)
through local interactions alone. Scientists have long been fascinated by
the oscillations, intermittencies, and "

punctuated equilibria
" that are

observed in real plant and animal populations. They have modeled these

phenomena using 
"
top-down" 

techniques of nonlinear dynamical systems
, in which aggregate state variables are related through , say, differ-

8 INTRODUCTION

Sex, Culture, and Conflict: The Emergence of History

Indeed, the aim of Chapter III is to "grow
" an entire history of an artificial 

civilization- a proto-history, as we call it. The storyline is as follows:
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ential equations. Yet we demonstrate that all these dynamics can be
"
grown

" from the "bottom -up." And, when they are conjoined with the

process es of combat, cultural exchange, and disease transmission, a vast

panoply of "possible histories,
" 

including our proto-history, is realized on

�

11. In Chapter IV we let economic preferences depend on these cultural attributes.

Then, when cultural interchange and economic process es are both active, we have a

model in which agent preferences change endogenously, in contrast to the assumption of

fixed preferences standard in economic theory.

the sugarscape.

It is possible to observe evolutionary process es as they alter the genetic

composition of our artificial society. For example, we expect that, over

many generations, selection pressures will operate in favor of agents

having relatively low metabolism and high vision. In fact, precisely this

behavior emerges on the sugarscape. In Chapter III we assign a color to

each agent according to its metabolism, then watch society change
color as selection pressures Nweed out" high metabolism individuals

over time. Selection also operates on agent vision. There is a kind of

genetic algorithm (GA) at work here, though we have not specified any
Nfitness function " beforehand. The topic of fitness, and the need to

define it in co evolutionary terms, is addressed.

With a sexual reproduction rule in place, it is natural to study geneal-

ogy using soda I networks. It is very interesting to watch these Nfamily
trees" branch out across the sugarscape.

The next ingredient of the proto-history is tribe formation . How do

tribes form? How does "social speciation
" occur? To address these questions

, we give agents cultural attributes and rules for their local transmission

.11 Cultural formations then Ngrow
" from the bottom up. We

represent cultural connections as lines between agents who have similar 

cultural attributes. These cultural connection networks expand, contract

, and deform over time .

Finally, when agents of one cultural Ntribe" encounter agents of a different 

tribe they may engage in a primitive kind of combat. That is,

agents of opposite tribes may plunder one another for sugar. However,

they are not so stupid as to attack agents who are capable of defeating

them, or to attack an agent of a different tribe when there are others

from that tribe in the vidnity who can retaliate success fully . Thus the

combat rule results in agent movement patterns very different from the

standard Neat all you can find " rule. We experiment with a variety of

combat rules in Chapter III .



Sugarscape

In Chapter IV a second cornrnodity- "
spice

"- is added to the resource

landscape, and each agent is given a corresponding metabolism for spice.
The relative size of an agent

's sugar and spice metabolisms determines
its preferences for the two resources. The agents move around the landscape 

searching for those sites that best satisfy their preferences. Each

agent must at all times possess positive quantities of both sugar and spice,
or it dies.

Agents are then given the ability to trade sugar and spice. All trade is
conducted in a decentralized fashion between neighboring agents, socalled 

bilateral exchange. Each pair of agents engaged in trade "bargains
" to

' 
a local price and then exchanges goods only if it makes both

agents better off . The main topics investigated in the chapter concern the

relationship of local prices to the formation of a single 
"market-clearing

"

price and the welfare properties of these artificial markets.12 These
issues are investigated for two distinct classes of agents: the idealized
economic agents found in economics textbooks and agents that are nonneoclassical 

insofar as they have finite lives and evolving preferences.

Markets of Neoclassical Agents

A crudal question is the following : Under what conditions (for example,
rules of agent behavior) will local prices converge to a market-clearing (general
equilibrium) price? We find that an equilibrium price is approached when
our artificial sodety consists of a large number of infinitely lived agents
having fixed preferences who trade for a long time . However, the
resource allocations that obtain, although locally optimal, fail to be globally 

optimal . That is, there are additional gains from trade that our

agents are unable to extract. The reason is that, while bilateral exchange
is pushing the artificial economy toward a globally optimal configuration

, production activities (resource gathering) are constantly modifying
this configuration . These two competing process es- exchange and production

- yield an economy that is perpetually out of equilibrium .
Because trade can simply be turned on or off in models of this type,

we can study the effects of trade on other sodal variables. In particular,
we find that the carrying capacity of the environment is increased when

10 I N T ROD U Cn ON

Sugar and Spice: Trade Comes to the

�

12. On the notion of an anificial economy, see Lane [1993J.



agents trade.13 However, this salutary result does not come free, for

under some circumstances trade increases sodetal inequality.

There are further implications for the welfare properties of markets.

The "equilibrium
" 

price that emerges under bilateral trade has adifferent 

character than the general equilibrium price of neoclassical theory;
it is statistical in nature. One implication of statistical equilibrium is that

agents having identical preferences and endowments can end up in very
different welfare states through decentralized trade: they encounter different 

people, bargain to different prices, and trade different quantities,

produdng initially small differences in their respective welfare states,
which may be amplified with time. This phenomenon is termed horizontal 

inequality.

Markets of Non-Neoclassical Agents

In neoclassical economic theory individual economic agents live forever

and have fixed preferences. We give agents finite lives and the ability to

reproduce sexually (as in Chapter Ill ) and study the effects on econom-

ic behavior. The primary result of adding new agents to our artificial

economy is to add variance to the distribution of trade prices in the sugar
-spice market. This occurs because as new agents are born it takes time

to have their internal valuations brought into line with those prevailing
in the marketplace. The amount of price dispersion this effect produces
increases as average agent lifetime decreases. Generally, increased vari -

ance in price corresponds to increased horizontal inequality, so the welfare 

properties of markets are further eroded by finite agent lives.

Preferences are permit ted to evolve by coupling them to the cultural

exchange process introduced in Chapter III . This yields several interesting 

econc;>mic phenomena. Agents whose preferences change from one

period to the next find that their accumulated holdings - quite satisfactory 

in the previous period- may not satisfy their current wants, so they
are more willing to trade than when preferences are fixed. Overall, we

find that total trade volumes are larger with evolving preferences. Too,

there is much more variation in prices under such circumstances, and

the average price follows a kind of "random drift " 
process. Nothing like

13. In Chapter VI a set of Sugarscape model runs in which this phenomenon plays a crucial 

role is described. The evolutions of two societies, identical in aU respects except that one

engages in interagent trade while the other does not, are compared and contrasted. The

nontraders end up extinct, while the traders are progenitors of a prosperous civilization .

INTRODUCTION 11
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the equilibrium of neoclassical theory emerges. Of course, the laissez-

faire argument is precisely that markets, left to their own devices, allocate 

goods and services efficiently. The theoretical case for this is the
so-called First Theorem of welfare economics. However, when markets
fail to arrive at equilibrium , the First Welfare Theorem does not apply,
and this case for laissez-faire is undermined .

When agents are permit ted to enter into credit relationships with one
another very elaborate borrower-lender networks result. Agents borrow
for purposes of having children. If an agent is of childbearing age but has
insufficient wealth to produce offspring, then it will ask each of its

neighbors in turn if they are willing to loan it the sugar it needs to
become "fertile ."14 

Prospective lenders assess the borrower 's ability to

repay a loan based on the borrower 's past income. Once a loan has been
consummated, it is repaid when due unless the borrower has insufficient 

accumulation, in which case it is renegotiated.
The credit connections that result from these rules are very dynamic.

In order to study these relationships, graphs of creditor-debtor arrangements 
are shown in which each agent is a venex and edges are drawn

between borrowers and lenders. These graphs are updated each time

period, thus showing the evolution of credit structures spatially.

Unexpectedly, some agents turn out to be borrowers and lenders simultaneously

, and this is most effectively displayed as a hierarchical graph,
with agents who are only lenders placed at the top of the hierarchy and
those who are only borrowers positioned at the bottom .

Social Computation

12 INTRODUCTION

Credit Networks

�

Yet another kind of social network is a trade partner graph, in which
each vertex represents an agent and edges are drawn between agents
who have traded with each other during a particular time period. Such

graphs not only represent social relations but also depict the physical
flow of commodities- sugar flows one way along an edge, while spice
gets transferred in the opposite direction. These graphs- webs of eco-

nomic intercourse- link agents who may be spatially quite distant, even

though all trade is local, that is, between neighbors. These networks are

14. As we define this term in Chapter III, "fenility
" includes an economic component.



ever-changing with time and are displayed in Chapter IV as animations.

During trade each agent acts to improve its welfare, that is, each participant 
optimizes its own utility function . A main question addressed in

Chapter IV is: To what extent does individual (local) optimality result in
overall social (global) optimality ? Consider each agent to be an
autonomous processing node in a computer, the agent society. Individual

agents (nodes) compute only what is best for themselves, not for the

society of agents as a whole. Over time, the trade partner network
describes the evolution of connections between these computational
nodes. Thus there is a sense in which agent society acts as a massively parallel 

computer, its interconnections evolving through time. This idea is fleshed
out in Chapter IV.

Another important area where agent-based techniques apply very
naturally is that of public health- epidemiology and immunology . We

study this in Chapter V.

Disease Agents

Hum~ns and infectious parasites have been co evolving for a long time .

Certainly, it would be hard to overstate the impact of infectious diseases
on human society. William McNeill [1976] has argued that infectious
diseases played crucial roles in the spread of religions, political dominions

, and social practices ranging from prohibitions on the consumption
of pork to caste systems of the sort seen even today in India . In our own
time, HIV has obviously had important sociopolitical impacts across a
wide variety of groups on many continents. In light of all this, there is

every reason to include epidemiology in social science. But there is equal
reason to include social science in epidemiology! After all, the Black
Death- Pasteurella pestis- could not have spread from China to Europe
without human technological advances and commercial intercourse,

notably in navigation and shipping. Needless to say, military conquest
and migration have been equally efficient vehicles for the dissemination
of infectious disease agents.

One aim of Chapter V, then, is to break down an artificial division

between fields, presenting an adaptive agents model in which the spread
of infectious diseases interacts with other social process es. We also hope
to advance epidemiology proper, in several respects. First, our treatment
of space differs fundamentally from that found in typical mathematical

models. Also, mathematical epidemiology typically divides society into

INTRODUCTION 13



homogeneous subpopulations- compartrnents such as susceptibles and

infectives within which there is no variation among individuals . In actuality

, substantial variation exists; agents are heterogeneous predsely in

that they have different immune systems. We endow every agent with

its own adaptive immune system. Our immunology is, of course, very

simple and highly idealized. Nonetheless, the explicit incorporation of

an immune model into the epidemic model enriches and unifies the

resulting picture . Important phenomena including immunological

memory and the persistence of childhood diseases emerge very naturally

. Moreover, since infected agents suffer a metabolic increase in our

model, the epidemic dynamics affect (through the agents
' metabolism-

dependent utility functions) their movements and economic behavior.

Over the course of these chapters, the agents
' behavioral repertoire

grows to include movement, resource gathering, sexual reproduction,
combat, cultural transmission, trade, inheritance, credit, pollution ,
immune learning, and disease propagation. In Chapter VI, we turn on

all these dimensions and explore the complex, multidimensional artificial 

society that emerges. The book then concludes with a discussion of

variations on, and extensions of, the current Sugarscape model.

Societiesversus

14 INTRODUCTION

A Society Is Born

Artificial Traditional Models

Heterogeneous Agent Populations

In a traditional ordinary differential equation model of an epidemic, the

total population is divided into subpopulations of, say, susceptibles and

infectives. These subgroups are homogeneous; nothing distinguish es one

member from another. Similarly, in ecosystem models there are preda-

tors and prey, but homogeneity is assumed within each species. In

macroeconomics the use of representative agents assumes away real-

world heterogeneity.



By contrast, in agent-based models there is no such aggregation. The

spatially distributed population is heterogeneous and consists of distinct

agents, each with its own genetically and culturally transmitted traits

(attributes and rules of behavior). Individual traits can change- adapt-

in the course of each agent
's life, as a result of interaction with other

agents, with diseases, and with an environment . And, in evolutionary
time (which can elapse quickly on computers), selection pressures operate 

to alter the distribution of traits in populations.

Space from

Agent-Environment
Local Rules

modelin~
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the Agent PopulationDistinct

and Agent-Agent Interactions according to Simple
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: of the system dynamics15. These points apply with equal force to aggregate
type (e.g., Stella, Dynamo).

the infection level) are continuous in x .

In ordinary differential equation models there is no spatial component at

all. Susceptibles and infectives, predators and prey, interact in time but

not in space.
15 In partial differential equation models there is a physical

space x, but the state variables representing agent populations (such as

In the simplest form of our model agents are born with various genetic
attributes, one of which is vision, and their rule of behavior is to look for

the best unoccupied resource location. Their search is local; no agent has

global information . Similarly, when we introduce trade there is no computation 

by any agent- or any 
"
super agent

" such as the Walrasian auctioneer

- of a market-clearing price. Price formation takes place by a

process of completely decentralized bilateral trade between neighbors.

Under some conditions prices converge to a statistical equilibrium . This

artificial economy stands in stark contrast to the neoclassical general

equilibrium formalism, which relies on aggregate excess demand func-

By contrast, in Sugarscape the agents live on a two -dimensionallat -

tice, but are completely distinct from it . When diseases occur, they are

passed from agent to agent, but the environment - and the agent
's rules

of in~eraction with it- affects the spatial distribution of agents, and

hence the epidemic dynamics. Likewise, it affects the dynamics of trade,

of combat, of population growth , of cultural transmission, and so on.



Focus on Dynamics

One need not confine one's attention to "equilibria, as is done in much of

mathematical sodal sdence.I6 A sodal system
's rest points, its equilibria,

may be the most analytically tractable configurations, but it is by no

means dear that they are either the most important or interesting configurations

. Indeed, in much of what follows it will be the dynamic properties 
of the model, rather than the static equilibria, that are of most

interest. In Chapter ill , for instance, we study the dynamics of cultural

transmission. Over thousands of time periods we see the sudden appearance 
of cultural "fads" and their irregular spatial propagation. These out-

of-equilibrium dynamics seem far more interesting than the static

cultural equilibrium into which the system is finally absorbed. With artificial 

sodeties built from the bottom up the transients are no more

difficult to study than the equilibria.I7

Beyond Methodological Individualism

Our point of departure in agent-based modeling is the individual : We give

agents rules of behavior and then spin the system forward in time and see

what macroscopic sodal structures emerge. This approach contrasts

sharply with the highly aggregate perspective of macroeconomics, sociol-

ogy, and certain subfields of political sdence, in which soda 1 aggregates
like classes and states are posited ab initio. To that extent our work can be

accurately characterized as Nmethodologically individualist ." However,

we part company with certain members of the individualist camp insofar

as we believe that the collective structures, or "institutions,
" that emerge

16. Proofs of the existence of general economic equilibrium , refinements of equilibrium

concepts in game theory (for example, Nash equilibrium ), theories of equilibrium selection

when multiple equilibria exist, and methods for evaluating the stability of equilibria are

dominant themes in this literature .

17. When a model produces some interesting transient for which no explanation is

immediately available, one can simply recreate the realization in question (by keeping
track of seeds to the random number generators) and then glean data (noiselessly) from

the agent population, data that will serve as the basis for analyses of the observed output .

Or it may be useful to pause the model at some particular point in its execution and query

particular agents for their state information .

16 INTRODUCTION

tions - or some other form of global information - for the existence of and

convergence to equilibrium .
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can have feedback effects in the agent population, altering the behavior
of individuals. 18 

Agent-based modeling allows us to study the interactions
between individuals and institutions.I9

Collective Structures Emerge from the Bottom Up

A general equilibrium price, when obtained in our model, is an example
of an emergent entity. In the usual general equilibrium story it is assumed. 
that every agent 

"takes" a price issued from the top down, by the socalled 
Walrasian auctioneer. By contrast we "grow

" an equilibrium price
from the bottom up through local interactions alone, dispensing with the
artifice of the auctioneer and the entire aggregate excess demand apparatus

. Many other collective structures emerge in our artificial society:
tribes of agents, stationary wealth distributions, and collective patterns of
movement, for example.

Artificial Societies versus ALife

The Sugarscape synthesizes two "threads" from the ALife research tapestry
. One is the field of cellular automata, or CA. A CA consists of a lattice

of cells, or sites. At every time, each cell has a value, such as 0 or I , black
or white , 

"on" or "off,
" or a color selected from a set of colors, such as

{red, blue, green}. These values are updated iteratively according to a
fixed rule that specifies exactly how the "new" value of every site is computed 

from its own present value and the values of its immediate neighbors
. Although, properly speaking, the pedigree of CAs extends at least as

far back as von Neumann's work on self-replicating automata, the most
familiar example is John Conway

's game, 
"Life."2O Cellular automata

18. Varying positions of methodological individualism are reviewed in Hausman [1992]
and Arrow [1994].

19. The term "bottom up
" can be somewhat misleading in that it suggests unidirectionality

: everything that emerges is outside the agent. But in models with feedback from
institutions to individuals there is emergence inside the agents as well.

20. The rules of "Life" are very simple:
1. A cell in state 0 switch es to state 1 if three of its eight lattice neighbors are in state

1; otherwise, it stays in state O.
2. A cell in state 1 stays in that state if two or three of its neighbors are in state 1;

otherwise, it switch es to state O.
3. Each cell is updated once per time period.

INTRODUCTION
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fires [Bak, Chen, and Tang, 1990], biological systems [Errnentrout and

Edelstein-Keshet, 1993], and a vast array of other complex spatial

process es. The sugarscape proper- as opposed to the agents- is modeled

as a CA.

Another major line of work in the ALife field does not involve an

explicit space, but rather concerns the interaction of agents in a "soup
"-

a (space-less) environment in which each agent may interact directly
with every other agent. The agents- unlike the cells in "Life"- have

many different attributes (e.g., internal states and rules of behavior)
which change through social interaction; see, for instance, Arthur [1994] .

Sugarscape agents are very simple by design. In particular, we specify
the agents

' behavioral rules and watch for the emergence of important
macro-social structures, such as skewed wealth distributions. The

agents
' rules do vary, but only parametrically, not structurally. For

instance, every agent has a utility function . Culturally varying parameters 
enter into these utility functions, but the algebraic form of the utility

function remains fixed, as does the agent
's practice of maximizing the

function . We say, then, that the microrules governing economic behavior 

adapt parametrically, not structurally. Similarly, agent immune systems 

adapt parametrically to new disease strains. The game in this

particular research has been to design the simplest possible agents and

explore what happens when they interact. As we shall see, the analytical 

challenges are already formidable. However, this is not the only possible 

game.

Instead of giving all agents the same rule, one might begin with a population 
of agents, each with a different rule, and allow selection pressure

to change the rule distribution over time. In other words, no individual

agent adapts, but (as in evolutionary game theory ) those who prosper

replicate and those doing poorly eventually die out . Over time, the rule

distribution evolves. Society 
"learns" though individuals do not ! I

Another modeling avenue is essentially to move the evolutionary

process inside the agent. Here, each individual entertains a number of

behavioral rules. Successful rules are promoted, while failures are

18 I N T ROD U Cn ON

have been created as models of fluid flow [Doolen et aI. 1990], earthquakes 

[Bak and Tang, 1989], clouds [Nagel and Raschke, 1992], forest

�

Under these rules a random initial distribution of black and white sites gives rise to a spectacular 
world of blinkers, wiggly 

"snakes," self-replicating 
"
gliders,

" and stable structures
on the lattice. For more on Life, see Sigmund [1993: 10- 15, 27- 39].

21. Examples of this approach in the context of the iterated prisoner
's dilemma include

Axelrod [1987], Miller [1989], and Lindgren [1992].



22. Other models in which agents inhabit a landscape include Holland's Echo [1992:
186- 198], Ackley and Littman [1992], Yeager

's Poly World (Yeager [1994], Wolff and

Yeager [1994: 170- 171]), and Bio Land of Werner and Dyer [1994].
23. Heuristically, one thinks of an artificial society as a discrete time dynamical system

in which the vector A of all agent internal states and the vector E of all environmental
states interact as a high-dimensional discrete dynamical system of the general fonD:

A,+I= f (A',E')
E'+l =g(A',E' )

where the vector functions f (8) and g(8) map the space of all states at time t to the space
at t+ 1.
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demoted, so that evolutionary learning occurs Uwithin" the agent;
Arthur [1994] is an example.

Yet more complex are models in which agents, in effect, Uinvent"

entirely novel behavioral rules. Classifier systems (Holland [1992]) and
neural networks (Rumelhart and McClelland [1986] and McClelland
and Rumelhart [1986]) have been used in such models; see, for example

, Marimon, McGrattan, and Sargent [1990] and Vriend [1995].

Toward Generative Social Science : Can You Grow It?

The broad aim of this research is to begin the development of a more unified
social science, one that embeds evolutionary process es in a computational environment 

that simulates demo graphics, the transmission of culture, conflict, eco-

nomics, disease, the emergence of groups, and agent coadaptation with an

environment, all from the bottom up. Artifidal society- type models may

change the way we think about explanation in the sodal sdences.

Cellular Automata + Agents = Sugarscape

In any event, if the pure CA is a space with no agents living on it, and
the pure adaptive agents model represents agent kinetics with no underlying 

space, then the Sugarscape model is a synthesis of these two
research threads. There is an underlying space- a "sugarscape

"- that is
a CA. But, populations of agents live on the CA.22 The agents interact
with one another and they interact with the environment. Interagent
dynamics affect environmental dynamics, which feed back into the

agent dynamics, and so on. The agent society and its spatial environment are

coupled.23
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24. This usage of the tenn "suffident" is similar to that of cognitive sdentists Newell and
Simon [1972: 13].

25. There may be many microspedfications that will do as well- the mapping from
micro-rules to macrostructure could be many to one. In the sodal sdences, that would be
an embarrassment of riches; in many areas, any to one would be an advance.

26. Issues of agent-based model validation- objectives, methods, and software tools-
are discussed in Axtell and Epstein [1994].

.27. On anifidal sodeties and generative sodal sdence, see Epstein and Axtell [J 996].
Further discussion of generative sodal sdence appears in Chapter VI.

What constitutes an explanation of an observed sodal phenomenon?

Perhaps one day people will interpret the question, 
"Can you explain

it?" as asking 
"Can you grow it?

" Artifidal sodety modeling allows us to
"
grow

" soda I structures in silico demonstrating that certain sets of

microspedfications are suffident to generate the macrophenomena of

interest.24 And that, after all, is a central aim. As sodal scientists, we are

presented with "
already emerged

" collective phenomena, and we seek

microrules that can generate them.25 We can, of course, use statistics to

test the match between the true, observed, structures and the ones we

grow.26 But the ability to grow them- greatly facilitated by modern

object-oriented programming- is what is new. Indeed, it holds out the

prospect of a new, generative, kind of soda I sdence.27



�

Life and Death on the Sugarscape

In 

this chapter the simplest version of our artificial world is described.

A single population of agents gathers a renewable resource from its

environment . We investigate the distribution of wealth that arises

among the agents and find that it is highly skewed. It is argued that

such distributions are emergent structures. Other emergent phenomena

associated with mass agent migrations are then studied. Social networks

among neighboring agents are illustrated and their significance is

discussed. Finally, it is argued that artificial societies can serve as

laboratories for social science research.

In the Beginning There Was Sugar

Events unfold on a "sugarscape.
" This is simply a spatial distribution , or

topography, of "
sugar,

" a generalized resource that agents must eat to

survive. The space is a two -dimensional coordinate grid or lattice. At

every point (x, y) on the lattice, there is both a sugar level and a sugar

capacity, the capacity being the maximum value the sugar level can take

at that point . Some points might have no sugar (a level of zero) and low

capacity, others might have no sugar but large capacity- as when agents

have just harvested all the sugar- while other sites might be rich in

sugar and near capacity.

The Sugarscape software system (that is, the computer program

proper) permits one to specify a variety of spatial distributions of levels

and capacities. But let us begin with the particular sugarscape shown in

figure ll - l , which consists of 2500 locations arranged on a 50 x 50

lattice with the sugar level at every site initially at its capacity value.

The sugar score is highest at the peaks in the northeast and southwest

quadrants of the grid- where the color is most yellow- and falls off in

a series of terraces.l The sugar scores range from some maxirnum-

�

�

�

1. Terms like Npeak
" or Nmountain 

N are not used to suggest physical elevation, but to

denote regions of high sugar level.
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THE SUGARSCAPE

here 4- at the peaks to zero at the extreme periphery. The sugarscape
wraps around from right to left (that is, were you to walk off the screen
to the right , you would reappear at the left ) and from top to bottom,

forming a doughnut- technically, a torus.

Simple Local Rules for the Environment

In our model, autonomous agents inhabit this sugarscape and constantly 
collect and consume sugar. We therefore need to postulate a rule for

how the sugar regenerates- how it grows back after it is harvested by
the agents.

Various rules are possible.
2 For instance, sugar could grow back

instantly to its capacity. Or it could grow back at a rate of one unit per
time step. Or it could grow back at different rates in different regions of
the sugarscape. Or the growback rate might be made to depend on the

sugar level of neighboring sites. We will examine several of these possibilities
. To begin, however, we stipulate that at each lattice point the

sugarscape obeys the following simple rule:

22 LIFE AND DEATH ON

Figure II-I . A Sugarscape Figure B-2.
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2. The main constraint we impose on ourselves in constructing such rules throughout
this book is to make them as simple as possible. This has two main implications, one theoretical 

and one practical. Theoretically, rule simplicity suggests that the agents use only
local information. Practically, we want to be able to state a particular rule in just a few lines
of code.
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Su9;arscape 9;rowback rule G,.: At each lattice position, sugar

grows back at a rate of a units per time interval up to the capacity 
at that position.3

With the sugarscape described, we now "flesh out" what we mean by
"
agents.

"

The Agents

Just as there is an initial distribution of sugar, there is also an initial population 

of "
agents.

" We want to give these agents the ability to move

around the sugarscape perfonning various tasks. In this chapter they

simply gather sugar and eat it .4 In later chapters their behavioral repertoire 

expands to include sex, cultural exchange, combat, trade, disease

transmission, and so on. These actions require that each agent have

internal states and behavioral rules.5 We describe these in turn .

Agent States

Each -agent is characterized by a set of fixed and variable states. For a

particular agent, its genetic characteristics are fixed for life while its

wealth, for instance, will vary over time .

One state of each agent is its location on the sugarscape. At every time

each agent has a position given by an ordered pair (x, y) of horizontal

and vertical lattice coordinates, respectively. l \ vo agents are not allowed

to occupy the same position. Some agents are born high on the sugarscape 

near the peaks of the sugar mountains shown in figure II -1.

Others start out in the sugar 
"badlands" where sugar capacities are very

low. One might think of an agent
's initial position as its "environmental

endowment .
" We shall first investigate a random distribution of 400

agents, as shown in figure ll -2.

Each agent has a genetic endowment consisting of a sugar metabolism

3. The rule can be stated formally. Call the current resource (sugar) level r' and the

capacity c. Then the new resource level, r '+/, is given by
r'+/ = min(r'+cx,c).

4. For a similar model, see Packard's [1989] anifidal ecology.

5. As noted in Chapter I, each agent is implemented as an "object
"; its internal states are

its "instance variables," while its behavioral rules are spedfied by its "methods." Technically,

the states of an agent are data while its behavioral rules are procedures (or subroutines).
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FigureD -3. Agent Vision

and a level of vision. Agents have different values for these genetic
attributes; thus the agent population is heterogeneous.6. 

The agent
's metabolism is simply the amount of sugar it bums per time

step, or iteration. Metabolisms are randomly distributed across agents. For
the runs of the model described immediately below, metabolism is uni -

fonnly distributed with a minimum of 1 and a maximum of 4.

Agent vision is also randomly distributed. Agents with vision v can see
v units in the four principal lattice directions: north , south, east, and west.

Agents have no diagonal vision. This lack of diagonal vision is a form of

imperfect information and functions to bound the agents
' "

rationality,
" as

it were. The nature of agent vision is illustrated in figure ll -3. An agent
with vision 3 can look out 3 units in the principal lattice directions. In
what follows vision is initially distributed unifonnly across agents with
values ranging from 1 to 6, unless stated otherwise.

All agents are given some initial endowment of sugar, which they carry
with them as they move about the sugarscape. Sugar collected but
not eaten- what an agent gathers beyond Its metabolism- is added to
the agent

's sugar holdings.
' There is no limit to how much sugar an

individual agent may accumulate.

6. When the number of genetic attributes is large it may even be the case that no two
agents are genetically identical.

7. Agent holdings do not decay over time.



Simple Local Rules for the Agents

The agents are also given a movement rule. Movement rules process
local infonnation about the sugarscape and return rank orderings of the

sites according to some criterion . Such rules are called "movement

rules" since each agent moves to the site it ranks highest. As with the

sugarscape growback rule, we require that agent movement be governed 

by a simple rule .

A natural way to order the sites is by the amount of sugar present at

each site within an agent
's vision. This results in the following movement 

rule, which is a kind of gradient search algorithm :

Agent movement rule M :
. Look out as far as vision pennits in the four principal lattice

directions and identify the unoccupied site(s) having the most

sugar;
8

. If the greatest sugar value appears on multiple sites then

select the nearest one;9

. Move to this site;IO

. . Collect all the sugar at this new position.

Succinctly, rule M amounts to this: From all lattice positions within

one's vision, find the nearest unoccupied position of maximum sugar, go
there and collect the sugar. 

I I

At this point the agent
's accumulated sugar wealth is incremented by the

sugar collected and decremented by the agent
's metabolic rate. U at any

time the agent
's sugar wealth falls to zero or below- that is, it has been

unable to accumulate enough sugar to satisfy its metabolic demands-

then we say that the agent has starved to death and it is removed from

the sugarscape. If an agent does not starve it lives forever.

8. The order in which each agent search es the four directions is random.

9. That is, if the largest sugar within an agent
's vision is four, but the value occurs twice,

once at a lattice position two units away and again at a site three units away, the former

is chosen. If it appears at multiple sites the same distance away, the first site encountered

is selected (the site search order being random).

10. Notice that there is no distinction between how far an agent can move and how far

it can see. So, if vision equals 5, the agent can move up to 5 lattice positions north , south,

east, or west.

11. Since all agents follow this behavioral rule, there is a sense in which they are quite

homogeneous. However, recalling that vision is randomly distributed in the agent population

, two distinct agents placed in identical environments will not generally respond

(behave) in the same way, that is, move to the same location.
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Each agent is permit ted to move once during each anificial time period
. The order in which agents move is randomized each time period.12

Artificial Society on the Sugarscape

All the ingredients are now in hand. We have a sugarscape and an initial 

population of agents, each of whom comes into the world with an
environmental and genetic endowment, and we have simple behavioral
rules for the sugarscape and the agents. Initially there will be only one
rule for the agents and one for the sugarscape, but in subsequent chapters 

both the environment and the agents will execute multiple rules.13

50 a notation is needed to describe the rules being executed for any particular 
run of the model. Call E the set of rules that the environment

executes, and let A be the set of rules the agents follow . Then the
ordered pair (E, A ) is the complete set of rules.

For the first run of the model, the sugarscape will follow an instance
of the general rule, Ga, that we call the "immediate growback rule."

5u~arscape rule G~: Grow back to full capacity immediately.14

This rule says that no matter what the current sugar level is at a site,

replace it with that site's sugar capacity. The agents will all execute movement 
rule M . Thus the complete set of rules being executed is ({G~), (M }).

Can you guess what will happen for these rules? Will the agents all

dump together atop the sugar mountains? Will agent motion persist
indefinitely ? Actual dynamics are shown in animation II -1.15

What is striking to us is the way the agents ultimately 
"stick" to the

12. All results reponed here have been produced by running the model on a serial computer
; therefore only one agent is Nactive" at any instant. In principle, the model could be

run on parallel hardware, permit ting agents to move simultaneously (although M would
have to be supplemented with a conflict resolution rule to handle cases in which two or
more agents simultaneously decide to inhabit the same site). Whenever one simulates on
a serial machine process es that occur in parallel, it is important to randomize the agent
order periodically to ensure against the production of simulation artifacts [Hubennan and
Glance, 1993] .

13. Appendix B presents a summary statement of all rules used, in their most

general fOnD.

14. Under the definition of GaG~ ensures that sites grow back instantly to capadty, since

r '+1 = min (- ,c) = c.

15. Users wishing to view animations should consult the README file on the CD-ROM
for instructions.
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16. Each time the model is run under rules ({G_}, (M}), results qualitatively similar to
those of animation ll -1 are produced. However, because the initial population of agents is
random- each agent has genetics and initial location drawn from cenain probability distribution 

functions- runs made with different streams of random numbers will generally
be completely different microscopically, that is, at the level of the agents. (Distinct random
number streams are created from run to run either by using distinct seeds in a fixed random 

number generator (RNG) or by employing altogether different RNGs. A common

way to make successive random number seeds uncorrelated in consecutive runs of amod-

el is to tie them to something independent of the model such as the actual time at which
the user stans the run.) Because the search direction in rule M is stochastic, even runs

having identical populations of agents will differ at the micro-level when, for example, a
RNG is re-seeded in the course of a run. All this said, however, let us emphasize that any
panicular run of the model is completely reproducible. That is, when the sequence of
random numbers is specified ex ante the model is deterministic. Stated yet another way,
model output is invariant from run to run when all aspects of the model are kept constant,
including the stream of random numbers.

ridges of the terraced sugarscape. With immediate growback to capacity,
the agents

' limited vision explains this behavior. Specifically, suppose

you are an agent with vision 2 and you are born on the terrace of sugar
height 2, just one unit south of the sugar terrace of level 3. With vision
2, you can see that the nearest maximum sugar position is on the ridge
of the sugar terrace of height 3, so, obeying rule M , you go there and
collect the sugar. Since there is instant growback, no point on the level
3 sugar terrace is an improvement; and with vision of only 2, you cannot
see the higher terrace of sugar level 4. So you stick on the ridge.

Also notice that some agents die. For those with high metabolism and

low vision, life is particularly hard. This run of the model reaches a

steady-state configuration once these unfortunates have died and the
rest have attained the best positions they can find .16 Much richer

dynamics result if we slow down the rate at which the sugarscape regenerates
, as shown in the next run of our artificial sodety.

For this second run we again take the initial population to be 400

agents arranged in a random spatial distribution . Each agent again executes 

rule M . But now let us change the sugarscape rule to GI : Every site

whose level is less than its capadty grows back at 1 unit per time

period. The complete rules are then ({GI}, {M }). The evolution is shown
in animation 11-2.

What first catches the eye in this animation is the continuous buzz of

activity; it reminds one of "
hiving ." But it is both purposeful and effi-

dent . It is purposeful in that the agents concentrate their activities on

the sugar peaks. Indeed, two " colonies" seem to form, one on each

mountain . If the intervening desert (low sugar zone) between the main
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Animation 0 -2. Societal Evolution under Rules ({GI}, (M }) from a
Random Initial Distribution of Agents
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sugar mountains were widened, the spatial segregation seen here would

be even more pronounced.

The agents are also efficient grazers. Focusing your attention on a particular 

sugar location atop one of the sugar peaks, you will see that once

it attains some level near its capacity value, it is struck. Then the agent
moves away, leaving a white site. Once the site grows back, some agent
will zip over and hit it , and so it goes.

An alternative view of rule M is that it is a decentralized harvesting rule .

Specifically, imagine yourself to be the owner of the sugarscape
resources and that your goal is to harvest as much sugar as possible. You

could give each of your agents explicit instructions as to which site to

harvest at what time. Such a harvesting program could turn out to be

very complicated indeed, especially when the differential capabilities of

the agents are taken into account. But M is also a harvesting program, a

highly decentralized one.

Carrying Capacity

This simulation illustrates one of the fundamental ideas in ecology and

environmental studies- the idea of a carrying capacity: A given environment 

will not support an indefinite population of agents.
17 In this case,

although 400 agents begin the simulation, a carrying capacity of approximately 
224 is eventually reached. This is revealed in the time series of

agent population given in figure II -4.

We can systematically study the dependence of the carrying capacity
on the genetic composition of the agent population . To do this one simply 

specifies particular distributions of vision and metabolism among the

agents and lets the model evolve until the asymptotic population level-

the carrying capacity- is reached. For a given set of distributions, each

run of the model will produce a somewhat different population value,

due to stochastic variations, hence, multiple runs must be performed.

Figure 11-5 gives the dependence of carrying capacity on inital mean

vision, parameterized by initial mean metabolism, <m>, starting with

500 agents.
IS

As agent vision increases each agent can see more of the sugarscape
and is therefore a more efficient harvester. Similarly, as agent metabolism 

decreases, each agent finds it somewhat easier to survive.
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17. For a comprehensive and considered inquiry into the question of Earth's human

carrying capadty, see Cohen [1995J.

18. Each data point represents the mean value of 10 runs.



Figure ll -4. Time Series of Population under Rules ({GI}, (M }) from a
Random Initial Distribution of Agents; Asymptotic Approach to the
Environmental Carrying Capacity of 224

Agents

Figure 8 -5. Carrying Capacities as a Function of Mean Agent Vision ,
Parameterized by Metabolism , under Rules ({GI ), {M }) from a Random

Initial Distribution of Agents
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Selection without Sex

In a primitive form our artificial world also illustrates a central idea of

evolutionary theory, that of selection. As mentioned above, at the outset

metabolism and vision are randomly distributed across agents, with each

varying between some minimum and maximum value. However, by the

time the carrying capacity is attained, the population is skewed in favor

of agents with low metabolism and high vision. These agents enjoy a

selective advantage over the high metabolism, low vision agents. And as

we shall see in the next chapter, when we add sexual reproduction to

the agents
' behavioral repertoire , this process becomes accretive

gene rationally, producing much stronger tendencies toward agents who

are increasingly 
"fit ." Even without sex, selection pressures can

be substantial. In the run depicted in animation II - 2, the initial mean

vision and metabolism were 3.5 and 2.5, respectively. After 500 time

periods, selection had increased mean vision to 4.1 and reduced mean

metabolism to 1.8.

Wealth and Its Distribution in the Agent Population

All the while in our artificial world agents are accumulating wealth

(measured , of course , in sugar ). And so, at any time , there is a distribution 

of wealth in society . The topic of wealth distribution has always

interested economists . To study the distribution of wealth in our artificial 

society we need to modify the previous run in two related ways .

First , if agents are pemlitted to live forever then no stationary wealth

distribution ever obtains - the agents simply accumulate indefinitely .

Since death is indisputably a fact of life , it is only realistic to insist on

finite agent lifetimes . So we set each agent
'
s maximum achievable age-

beyond which it cannot live - to a random number drawn from some

interval [a,b] . Of course , agents can still die of starvation , as before .

Given that agents are to have finite lifetimes , the second modification

that must be implemented is a rule of agent replacement . One can imagine 

many such rules ; for example , a fixed number of new agents could

be added each period . However , to ensure a stationary wealth distribution 

it is desirable to use a replacement rule that produces a constant

population . The following replacement rule achieves this goal .

A ent replacement rule Rla.b]: When an agent dies it is replaced

by an agent of age 0 having random genetic attributes , random

32 LIFE AND DEATH ON THE SUGARSCAPE



position on the sugarscape, random initial endowment, and a
maximum age randomly selected from the range [a,b] .

To study the actual evolution of the distribution of wealth on the sugarscape 
we place 250 agents- approximately the carrying capacity- randomly 

about the sugarscape and let them move and accumulate sugar as
before (agent movement rule M ). Replacement rule R[60. 100] is in effect. 19

Initial agent endowments are unifonnly distributed between 5 and 25.
The sugarscape grows back at unit rate (environment rule GI ). Now,
since we want to track the distribution of wealth, not the spatial distribution 

of agents, we show a histogram of wealth animated over time. In
animation 1I-3, the horizontal axis gives the range of individual wealth
in society, divided into ten "bins." The vertical axis gives the number of

agents falling into the various bins. How does the distribution evolve?
While initially quite symmetrical, the distribution ends up highly

skewed.2O Such skewed wealth distributions are produced for wide

ranges of agent and environment specifications. They seem to be characteristic 
of heterogeneous agents extracting resources from a landscape

of fixed capacity. By contrast, the distribution of income, defined as the
amount harvested per period less metabolism, is much less skewed.21

In the sciences of complexity, we would call this skewed distribution an

emergent structure, a stable macroscopic or aggregate pattern induced by
the local interaction of the agents. Since it emerged Hfrom the bottom

up,
" we point to it as an example of self-organization. Left to their own,

strictly local, devices the agents achieve a collective structuring of some
son. This distribution is our first example of a so-called emergent structure.

The term Hemergence H 
appears in cenain areas of complexity theory,

distributed anificial intelligence, and philosophy. It is used in a variety of

ways to describe situations in which the interaction of many
autonomous individual components produces some kind of coherent,

systematic behavior involving multiple agents. To our knowledge, no
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19. Note that the mean death age will be 80 when few agents die of starvation.
20. Agents having wealth above the mean frequently have both high vision and low

metabolism. In order to become one of the very wealthiest agents one must also be born

high on the sugarscape and live a long life.
21. The maximum income possible is 3, since the maximum sugar level is 4 and the

minimum metabolism is 1.



Animation B-3. Wealth Histogram Evolution under Rules ({GI), {M,
R[60,IOO]}) from a Random Initial Distribution of Agents
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completely satisfactory formal theory of II emergence
" has been given.22 A

particularly loose usage of l I emergent
" 

simply equates it with I I 
SUrprising

"

or "unexpected,
" as when researchers are unprepared for the kind of systematic 

behavior that emanates from their computers.23 A less subjective
usage applies the term to group behaviors that are qualitatively different
from the behaviors of individuals composing the group.

We use the term II emergent
" to denote stable macroscopic patterns arising

from the local interaction of agents. One example is the skewed wealth distribution

; here, the emergent structure is statistical in nature. There is a

qualitatively different type of emergent phenomenon that we also
observe. An example of this, described below, occurs when a wave of

agents moves collectively in a diagonal direction on the sugarscape, this
even though individual agents can move only north , south, east, or
west. That is, the group adopts a heading unavailable to any individual !
While both the highly skewed wealth distribution and the collective
wave satisfy our definition of emergence, they differ in a fundamental

respect. We know what it would mean for an individual agent to travel
on a diagonal; the local rule simply prohibits it . By contrast, we do not
know what it would mean for an individual to have a wealth distribution

; at a given time, only groups can have distributions.24

Understanding how simple local rules give rise to collective structure
is a central goal of the sciences of complexity. As we will frequently
observe, such understanding would have fundamental implications for

policy. For instance, we might be able to distinguish conditions (on
information or spatial heterogeneity, for example) conducive to the

emergence of efficient markets from conditions making their emergence
highly unlikely . We might then be better equipped to answer the following 

sort of question: Is it reasonable to base policy on the assumption
that if central authorities I Ijust get out of the way

" then efficient markets
will self-organize in Russia? Clearly, implicit assumptions on seemingly

22. Interesting effons are under way, however; see Baas [ 1994] .
23. This usage obviously begs the question, 

"
Surprising to whom ?"

24. To formalize things somewhat, let A denote an agent and C denote a collection of

agents. Let P(A) denote the proposition
" A has propeny P,

" and likewise for P(C). Then
there are at least two types of emergence:

1. P(A) and P(C) are both meaningful, but only P(C) is observed (for example, collective 

diagonal waves);
2. Only P(C) is meaningful and it is observed (for example, the skewed wealth distribution

).
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25. A large literature surrounds the Pareto "law." See, for example, Kirman [1990] and

Persky [1992].
26. See Steindl [1990].

abstract questions of N 
emergence

" drive policy at fundamental levels.

Returning to the wealth distribution of animation II -3, some have

argued, espedally in the context of the so-called Pareto "law,
" that highly 

skewed distributions of income and wealth represent some sort of

Nnatural order,
" a kind of immutable Nlaw of nature."25 Artificial social

systems let us explore just how immutable such distributions are. We

can adjust local rules~ like those concerning inheritance and taxation-

and see if the same global pattern in fact emerges.

Measures of Economic Inequality: The Gini Coefficient

It is possible to fit the wealth distribution of animation II -3, or its cumulative 

distribution counterpart, to any number of empirically significant
distribution functions. Such distributions- the Pareto-Levy distribution

being perhaps the best known - are typically characterized by one or

two parameters, and it might be informative to compare the parameter
values obtained from our artificial sodety with those from real sodeties.

The point of such exerdses is to compress information on whole distributions 

into just a few parameters. This not only fadlitates comparison
with real economic data but also provides a basis for describing the

results of simulations in summary terms. For example, if rules (E, A )

yield a wealth distribution statisticS while rules (E, A
'
) result in S' > S,

it can unambiguously be said that changing agent rules from A to At

causesS to increase.

In particular, we are interested in summary statistics that can be interpreted 

as measures of inequity. There are a variety of ways to accomplish
this when the distribution function to be fit is spedfied. For example, the

exponent in the Pareto distribution is a measure of the inequality of the

distribution . However, its interpretation is far from unambiguous} 6 One

summary statistic relating to inequality of income or wealth is the socalled 

Gini coefficient. It has the desirable property that it does not

depend on an underlying distribution ; that is, it is a Ndistribution-free"

statistic.

The nature of the Gini coeffident or ratio is conveniently explained by
reference to the so-called Lorenz curve. This is a plot of the fraction of

total sodal wealth (or income) owned by a given poorest fraction of the
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population . Any unequal distribution of wealth produces a Lorenz curve

that lies below the 450 line- the poorest X percent of the population

controls less than X percent of the society
's total wealth . The Gini ratio

is a measure of how much the Lorenz curve departs from the 450 line .

If everyone has the same amount of wealth the Gini ratio is zero, while

if a single individual owns everything then the Gini ratio is one. As the

Gini coefficient increases society becomes less egalitarian.27

To construct a Lorenz curve for wealth, one first ranks the agents from

poorest to wealthiest. Each agent
's ranking determines its position along

the horizontal axis. Then, for a given agent (abscissa) an ordinate is plot -

ted having a value equal to the total wealth held by the agent and all

agents poorer than the agent. The first image in animation II -4 is a

Lorenz curve for the initial distribution of
' 
wealth on the sugarscape for

the run described in animation ll -3. When the animation is run , one

observes a monotone increase in the curvature of the Lorenz curve- it

progressively 
"bows" outward as inequality grows.

The animation also displays a real-time computation of the Gini coefficient

. Note that it starts out quite small (about 0.230) and ends up fairly 

large (0.503). This Gini ratio, approximately constant for long-time

evol1:1tions of the society, is much lower than that seen in industrial societies

. In subsequent chapters we shall augment the agents
' rules of

behavior to include, for example, inheritance, trade, and so on. The Gini

ratios of the artificial societies that result then begin to resemble those of

developed economies.

The ability to alter agent interaction rules and noiselessly compute the

effect on the Gini ratio and other summary statistics is one of the most

powerful features of artificial societies. They are "laboratories" for the

study of social systems.

SocialNetworks

As described in Chapter I, we study various agent connection networks

in this book. The first of these will be relatively straightforward, adding

insight to the basic picture of "hiving
" on the sugarscape. Specifically, we

want to keep track of each agent
's "neighbors."

One might define the term "neighbor
" in a variety of ways. Since our

27. For a more detailed exposition of the Lorenz curve, see Kakwani [1990]. A concise

description of the Gini ratio is Dagum [1990].

; of Neighbors
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agents live on a rectangular lattice it is natural to use the so-called von
Neumann neighborhood, defined to be the set of sites immediately to
the nonh , south, east, and west of a particular site. A von Neumann

neighborhood is depicted in figure n -6.

An alternative is the Moore neighborhood, which includes all four
sites of the von Neumann neighborhood as well as the four sites along

38 LIFE AND DEATH ON THE SUGARSCAPE

Animation ll -4. Evolution of the Lorenz Curve and the Gini
Coeffident under Rules ({GI}, {M, R[60.IOO]})



Neumann

�

the diagonals. Thus there are eight Moore neighbors as shown in figure
11- 7.

In what follows we shall always employ the von Neumann neighborhood
.28 When an agent moves to a new position on the sugarscape it has

from zero to four neighbors. Each agent keeps track of these neighboring 

agents internally until it moves again, when it replaces its old neighbors 
with its new neighbors.

The neighbor connection network is a directed graph with agents as

the nodes and edges drawn to the agents who have been their neighbors

; it is constructed as follows. Imagine that agents are positioned on

the sugarscape and that none has moved. The first agent now executes

M , moves to a new site, and then builds a list of its von Neumann neighbors

, which it maintains until its next move. The second agent then

moves and builds its list of (post-move) neighbors. The third agent
moves and builds its list, and so on until all agents have moved. At this

point , lines are drawn from each agent to all agents on its list. The resulting 

graph- a sodal network of neighbors - is redrawn after every cycle

through the agent population .29 What is most interesting about such

LIFE AND DEATH ON THE SUGARS CAPE 39

NeighborhoodFigure ll -6. An Agent Its van

�

28. In the Sugarscape software system that produced the animations in this book and
CD-ROM, one can specify that either a von Neumann or a Moore neighborhood be used.

29. Note that agent-neighbor connections may be asymmetrical (that is, agent i is on

agent k
's list but not conversely) and may extend beyond an agent

's von Neumann neighborhood
. To see this, imagine that agent i moves into agent k

's neighborhood and, accord-



�

graphs, or networks, is that they change over time as agents (the nodes)
move around on the sugarscape. Animation ll -5 depicts the development 

of agent connection networks under rules ({GI), {M }), the same
rules that produced animation 11-2. Note that some of the neighbor
graphs are simple, while others are elaborate webs containing cycles and
other structures. Clearly, a rich variety arises.

The connection network reveals something not visible in the earlier
animations of agents on the sugarscape. lf , for instance, message-passing
is pernlitted only between neighbors, what is the chance that a message
could make its way across the entire sugarscape? If we whisper it in the
ear of a southwestern agent, will a northeastern one ever hear it? If the
world is divided into two spatially separated and noninteracting networks

, then neighborwise communication will be limited , and information 

may be localized in a concrete sense, a phenomenon with

important implications in a number of spheres. When agent interaction

(for example, trade) occurs over such networks, the term "connection
network " seems less apt than the term "social network ."3O In essence,
the connections describe a topology of social interactions.

ingly, puts k on its list. Then, when it 's k's turn to move, it hops out of i 's neighborhood,
so when it builds itS (post-move) list, i is not on it . In the resulting graph, then, the edge
from i to k will go beyond i

's neighborhood, and i will not be on k's list (asymmetry).
30. The literature on social networks is large; Scott [1992] and Kochen [1989] are good

introductions . Recent work espedally relevant to the dynamic networks presented here
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Figure B-7. An Agent and Its Moore Neighborhood
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Evolution of Social Networks of Neighbors underAnimation 11-5.
Rules ({GI}, (M})



Migration

The skewed wealth distributions above are examples of emergent structures
. We turn now to a different kind of emergent structure, this one

spatial in nature. To "grow
" it we need to give the agents a maximum

vision of ten rather than the value of six used above. Now, instead of the
random initial distribution of agents on the sugarscape used earlier, suppose 

they are initially clustered in the dense block shown in the first
frame of animation ll -6. In all other respects the agents and sugarscape
are exactly as in animation ll -2. How will this block start affect the

dynamics?

A succession of coherent waves results, a phenomenon we did not

expect. Reflecting on the local rule, however, the behavior is understandable
. Agents in the leading edge proceed to the best unoccupied

sugar site within their vision. This leaves a "bald zone" where they had
been. The agents behind them must wait until the bald spot grows back
under G1 before they have any incentive, under rule M , to move to
those lattice points, and so on for the agents behind them. Hence, the
series of waves.31

.While these waves seem to qualify as emergent structures, the diagonal 
direction in which they propagate is perhaps even more interesting.

Recall that during a single application of M the individual agent can only
move north , south, east, or west. Yet the collective wave is clearly moving 

northeast- a heading unavailable to individuals ! On closer examination

, the collective northeast direction results from a complex
interweaving of agents, none of whom can move in this direction. This
is shown in figure II -8. Here, the local rule precludes individual behavior

mimicking the collective behavior.32

includes Banks and Carley [1994a, 1994b], SaniI. Banks, and Carley [1994], and Carley et
al. [1994].

31. In pure cellular automata (CA) models, waves are phenomena of significant interest
. Recently Sato and Iwasa [1993] have produced these in a CA model of forest ecology.

Recent attempts by mathematical biologists to model the wavelike movement of certain
mammal herds include Gueron and Levin [1993, 1994] and Gueron, Levin, and
Rubenstein [1993]. For an economic model of Nherding,

" see Kirman [1993].
32. Thus emergence, in this case, is the opposite of self-similarity, in which a given pattern 

is observed on all scales (that is, all orders of magnification) as in fractals.
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tmod(2'Y)
'Y

is less than 1, then the season is summer (winter). Otherwise the season is winter (summer
). If the season is summer then the growback rate is a units per time interval. If it is

winter it is a units per ~ time intervals. Here the NmodN operator symbolizes the remainder 

resulting from an integer division operation; x mody is the remainder upon division

Figure 11-8. Interweaving Action of Agents

�

33. This rule can be stated fonna Uy. Noting the time by t, for the sites in the top half
(bottom half ) of the sugarscape if the value of the quantity

Seasonal, Migration

As another example of macrobehavior patterns arising from simple local
rules, let us see if our agents can migrate with the seasons. First, to create
artifidal seasons, we split the familiar sugarscape into a north and a south

by drawing an imaginary equator, a horizontal line cutting the sugarscape
in half. For the opening season, the sugarscape grows back at unit rate in
the north and at one-eighth that rate in the south; it is "bloom" season in
the north and "drought

" in the south. Then, after fifty time periods, the
situation is reversed; the seasons change. The south grows back at unit
rate and the north regenerates at one-eighth that rate. And so it goes, season 

after season. The general rule can be stated as follows:

Su~arscape seasonal ~rowback rule S I V P' Y: Initially it is summer in

the top half of the sugarscape and winter in the bottom half.

Then, every 'Y time periods the seasons flip - in the region
where it was summer it becomes winter and vice versa. For

each site, if the season is summer then sugar grows back at a

rate of a units per time interval ; if the season is winter then the

growback rate is a units per ~ time intervals.33
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The question we ask now is this: H the simulation is begun with the
same simple agents randomly distributed on the sugarscape, will they
migrate back and forth with the seasons? Animation II - 7 gives the answer.

Again, the agents, operating under the same simple local rule M,
exhibit collective behavior far more complex- and far more realistic-

than we had expected. Yes, we get migrators. But, we also get 
"hiberna-

tors" ! The high vision (
"bird -like "

) creatures migrate . The low
vision- low metabolism (

"bear-like"
) creatures hibernate. Agents with

low vision and high metabolism generally die; they are selected against.
Notice, however, that a hibernator born in the south rarely goes north ,

and a hibernator born in the nonh rarely goes south. Northern and
southern hibernators, inshon , would rarely meet and, hence, would

rarely mate. They would fonn , in effect, separate mating pools and, in

evolutionary time, 
"
speciation

" would occur.

Pollution: A Negative Externality

So far, in simply grazing the sugarscape, agents have been interacting
with one another indirectly . That is, agents move on the basis of what

they find in their local environment , and what they find is the result of
the actions of other agents.

34 Such indirect interactions are a kind of

externality.35 Externalities can be positive or negative. Pollution is an

example of the latter type. A polluter degrades the environment in
which other agents live and in so doing reduces the welfare of other

agents, and possibly its own welfare as well .

There are many ways in which pollution can be added to the sugarscape
. It might be produced by agent movement, agent gathering

activities, agent sugar consumption, sugar growback, or some other
mechanism. There might be many types of pollutants, each produced at
different rates. Pollutants may get transported to other sites at various
rates and could possess a natural growth or decay rate. And in order for
the pollution to be a negative externality it must affect the agent

of x by y. For example, 5 mod 2 = 1. Note that for 'Y larger than the duration of a run the
seasons never change.

34. But the agents do not interact directly. In subsequent chapters the agents interact
with one another, through behaviors such as sex and trade.

35. When the action of one agent affects the welfare- here, the sugar wealth- of a second 
agent and is not constrained socially (through a market, for instance), then anexter-

nalityexists [Campbell, 1987: 57].
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adversely. It could enter the agents
' bodies and degrade their vision, say,

or increase their metabolisms, as if it made them sick. Or it could simply
be a negative amenity- the agents could just dislike it and so try to avoid
it whenever possible. In that case it would be as if a second commodity
had been added to the sugarscape, an economic Nbad."

We have chosen a very simple pollution formation rule. There is one

type of pollutant . It is produced by both gathering and consumption
activities, in proportion to the amount of sugar gathered and consumed,
respectively. It accumulates on the sites at which the gathering and consumption 

activities occur. Stated formally, the rule is:

Pollution formation rule P IV~: When sugar quantitys is gathered
from the sugarscape, an amount of production pollution is

generated in quantity as. When sugar amount misconsumed

(metabolized), consumption pollution is generated according to

~m. The total pollution on a site at time t, pt, is the sum of the

pollution present at the previous time, plus the pollution
resulting from production and consumption activities, that is,
pt = pt

-l + as + ~m.36

Pollution affects the agents in a very simple way: it has negative
amenity value. That is, they just do not like it ! The simplest way to

incorporate this is to modify the agent movement rule somewhat, to let
the pollution devalue- in the agents

' 
eyes- the sites where it is present.

Instead of moving to the site of maximum sugar, we now specify that
the agents select the site having the maximum sugar to pollution ratio.37

That is, those sites with high sugar levels and low pollution levels are the
most attractive. The modified agent movement rule now reads (with the

changes to the previous rule italicized):

Agent movement rule M , modified for pollution :
. Look out as far as vision permits in the four principal lattice

directions and identify the unoccupied site(s) having the
maximum sugar to pollution ratio;

36. The Sugarscape software system offers a more general pollution formation rule
than this. There can be multiple types of pollutants, each produced at different rates. In

Chapter IV, when investigating the effect of pollution on prices and economic trade activity
, we shall make use of the general pollution formation rule. This more general rule is

described fully in Appendix B, along with the general forms of all other rules.
37. To be precise, the ratio computed is actually s/ (l +p) to preclude division by zero in

the no pollution case.
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38. The simple growback rule Ga does this only trivially since growback rates on any
site are independent of either growback rates or sugar levels on neighboring sites. We have

experimented with growback rules that do, in fact, have this dependence. One such rule

is as follows: if the level of sugar is not 0, then apply Go; however, if the sugar level is 0,
then grow back only if some neighboring site has a nonzero sugar level. It is as if each barren 

site must be "seeded" by neighbors.

48 LIFE AND DEATH ON THE S U G A R' S CAP E
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. If the maximum sugar to pollution ratio appears on multiple
sites, then select the nearest one;

. Move to this site;

. Collect all the sugar at this new position.

The final ingredient to add is some form of pollution transport.

Without transport or dissipation pollution simply accumulates without

bound at the sites where it is produced. Perhaps the simplest form of

transport is diffusion. Diffusion on a lattice like the sugarscape is simply

implemented as a local averaging procedure. That is, diffusion transports

pollution from sites of high levels to sites of low levels. This can bestat -

ed algorithmically as:

Pollution diffusion rule DIY:
. Each a. time periods and at each site, compute the pollution

flux- the average pollution level over all von Neumann

neighboring sites;
. Each site's flux becomes its new pollution level.

The reader with a knowledge of cellular automata (CA) will notice that

this rule, which relates the pollution on any site to that on other sites,

makes the sugarscape a true CA.38 Note that as a. is increased the rate of

diffusion is decreased, so DI is the fastest diffusion possible.

These simple rules, taken together, prove sufficient to "grow
" areasonable 

story of agent response to an agent polluted environment. In animation 

ll -8 agents execute the modified movement rule, M . The sugarscape

grows back according to 61. At t = 50 pollution begins (rule PII is turned

on). Then, at t = 100, diffusion begins (rule DI is switched on).

At first the agents are merrily hiving the sugar hills, as usual. Pollution

levels are low, and the behavior produced by the modified movement

rule is not much different from that produced by the original movement

rule. Eventually, however, pollution levels build up and the agents

progressively abandon the polluted zone. They are forced off the sugar
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39. It is at this point that a clear "tragedy of the commonsw interpretation of life on the

sugarscape manifests itself. Metabolisms are constant and so, for a fixed agent population,

sugar consumption and the pollution it generates are fixed; thus, the only way pollution
levels can be decreased is to reduce the amount of pollution generated through production 

(harvesting) activities. If, for instance, those agent S who harvest more sugar than they
consume in following M were to follow some alternative rule, harvesting only, say, half
the sugar they find beyond their metabolic needs, then overall pollution levels would fall.
While this behavioral rule would make these agents worse off, in comparison to M, by
lowering their income, perhaps all agents could be made better off through side payments.
Alternative rules- institutions- for managing such common propeny resource problems
in general are investigated at length by Ostrom [1990] and Ostrom, Gardner, and Walker

[1994].
40. For a very general analysis along these lines, see Papageorgiou and Smith [1993];

see also Krugman [1996].

50 LIFE AND DEATH ON THE SUGARSCAPE

A Social Interpretation

It is possible to give a social intrepretation to the migratory dynamics just
discussed. When seasons change or pollution levels rise, large numbers

of agents migrate to particular regions of the sugarscape. In effect, they

�

peaks, migrating into relatively pristine areas where no pollution from

sugar production has accumulated. However, as agents continue to eat

from their personal accumulations, they progressively despoil even this

area through consumption pollution . Because there is little food for the

agents out in this resource-poor hinterland , competition is intense.

Many die of starvation - the carrying capacity of the polluted
environment is lower.

Subsequently, when diffusion is turned on, the pollution quickly

spreads more or less uniformly around the landscape and many agents
move back to the regions of highest sugar. As they continue to gather
and metabolize sugar, pollution increases while diffusing over the entire

landscape. There is a kind of rising 
"red tide" that diminish es the welfare

of all agents still alive on the sugarscape.
39

It turns out that the same type of dynamic pattern appears when the

externality involved is positive rather than negative. Positive externali-

ties- increasing returns or network externalities, for example- give

agents reasons to associate with one another, to spatially cluster. Of

course, the two types of externalities can be combined: there may be

positive externalities associated with production but negative externali -
"
ties associated with consumption. Are cities the "balance points

"

between these opposed effects?4O



are environmental refuge es; an environmental catastrophe has struck
their zone and they flood into better areas. In Chapter ill , we introduce
combat. Its intensity can grow when competition for resources becomes
severe. An influx of environmental refuge es suddenly boosts the agent
density in the receiving zone and, naturally, competition for sugar inten -

sifies dramatically. The model suggests, therefore, that environmental

degradation can have serious security implications.41

mmary

These exercises make clear that a wide range of collective structures and

collective patterns of behavior can emerge from the spatio -temporal
interaction of agents operating , individually , under simple local rules .

For example , only one agent rule , M , has been used, and it is about as

primitive a rule as we could construct . Paraphrasing , it amounts to the

instruction : "Look around for the best free site; go there and harvest the

sugar.
" 

And yet , all sorts of unexpected things emerge from the interaction 

of these agents : basic principles like the existence of environmental

carrying capacities; skewed distributions of wealth ; coherent group
structures like waves that move in directions unavailable to individuals ;
and biological process es like hibernation and migration (refuge es). And

that strikes us as surprising . The nature of the surprise is worth

discussing .

The Surprising Sufficiency of Simple Rules

We have succeeded in I I 
growing

" a number of quite familiar collective
behaviors, such as migration , and familiar macroscopic structures, such
as skewed wealth distributions. And we grow many more familiar

macroscopic entities below. Now, upon first exposure to these familiar
social, or macroscopic, structures - be they migrations, skewed wealth
distributions, or the like- some people say, 

I I Yes, that looks familiar. But,
I 've seen it before. What 's the surprise?"

The surprise consists precisely in the emergence of familiar
macrostructures from the bottom up - from simple local rules that out-

LIFE AND DEATH ON THE SUGARSCAPE 51

�

41. The conneCtion between environmental change and security is the subjeCt of several 
recent studies by Homer-Dixon [ 1991, 1994] . The mathematical struCture of spatial

patterns resulting from conflicts has been studied by Vickers, Hutson, and Budd [1993] .



wardly appear quite remote from the social, or collective, phenomena

they generate. In short, it is not the emergent macroscopic object per se that is

surprising, but the generative sufficiency of the simple local rules.

Of course, for the model to be of practical use to social scientists, a

minimum requirement is that it generate familiar phenomena with

some fidelity . If the model cannot generate the familiar world as a base

case, then how can we use it to examine the effects of various policies,

for example?

Furthermore, there may be familiar and important social phenomena
that are hard to study with standard tools. For instance, we can do more

than turn pollution on and off in our model; we can track its effect on

prices (see Chapter IV). We find that a pollution -induced shortage of one

good increases its price, an effect described in standard economics texts.

But when we then diffuse the pollutant , relieving the shortage, relative

prices do not return to equilibrium instantly- on the contrary, the

adjustment may take a long time. And adjustment dynamics are difficult

to model within the standard equilibrium framework . Moreover, had

we been unable to get the familiar result (that is, the ilright
" 

price

response to shortage), this lag in adjustment would not be credible.
. The main point , however, is that, when- in subsequent chapters- we

grow a familiar macrostructure, it is the sufficiency of the local rules that

is surprising.

Artificial Social Systems as Laboratories

52 LIFE AND DEATH ON THE SUGARSCAPE

Of course, in this exposition, we presented the rules before carrying out

any simulations. We might have proceeded differently . Imagine that we

had begun the entire discussion by simply running animation II -2,

which shows a buzz of agents 
"
hiving

" the sugar mountains, and that we

had then bluntly asked, 
"What 's happening here?" Would you have

guessed that the agents are all following rule M ? We do not think we

would have been able to divine it . But that really is all that is happening
. Isn't it just possible that something comparably simple is "all that is

happening
" in other complex systems, such as stock ~ ~rkets or political

systems? As social scientists, this is the problem we normally confront .

We observe the complex collective- already emerged- behavior, and

we seek simple local rules of individual behavior (for example, maximize 

profit ) that could generate it .

The Sugarscape model can function as a kind of laboratory where we
"
grow

" fundamental social structures in silica, thereby learning which
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micromechanisms are suffident to generate macrostructures of interest.

Such experiments can lead to hypotheses of sodal concern that may

subsequently be tested statistically against data.

In Chapter ill we expand the behavioral repertoire of our agents,

allowing us to study more complex sodal phenomena.



� �

Sex , Culture , and Conflict :

The Emergence of History

1. Since it is not a quantitatively exact story, the Nproto-history
" admits many realizations

. The issue is whether we can grow one of these with the ingredients developed in
this chapter.

�

�

�

The 

basic aim of this chapter is to "grow
" a very simple caricature of

history- a Nproto-history,
" if you will . History unfolds on the Ntwin-

peaked
" 

sugarscape familiar from Chapter II, with the sugarscape following 
the unit growback rule, 61. The agents once again move according to

rule M but now have other behavioral modes as well, including sex, cultural 

exchange, and combat. The social story is as follows:

In the beginning, there is a small population of agents, randomly distributed 
both in space and with respect to their genetic characteristics.

Over time spatial agglomeration into two groups occurs as each

agent- guided by the primal sugar drive- migrates to one of the two
. 

sugar peaks. There, in the midst of plenty, the pioneer agents interact

sexually, producing children, who in turn beget children, and so on.
All the while process es of cultural evolution are operating within each

group producing culturally distinct "tribes" of agents on the two
mountains. Ultimately, as population pressures mount from overexploitation 

of the sugar resources, each tribe spreads down into the central 

sugar lowlands between the two mountains. When the two tribes

ultimately collide, process es of assimilation occur and feed back on the

reproductive and cultural activities of the tribes, yielding complex social
evolutions.

Our goal, as always, is to grow this history 
"from the bottom up." Can

the entire social history- along with all sorts of variants- be made to

emerge from the interaction of agents operating under simple local
rules?1

In what follows we consider matters of sex first, followed by cultural
transmission and the formation of groups, then combat between indi -



SEX, CULTURE, AND CONFLICT: THE EMERGENCE OF HISTORY 55

Sexual Reproduction

Can we develop an agent-based demography in which the main dynamics 
observed in populations emerge from the local interactions of the individuals

? Minimally , we would like to be able to I Igrow
" the full range of

observed aggregate population trajectories, including relatively stable

population levels and large oscillations. Variables like I 
Ifenility rate,

"

which are treated as exogenous, often fixed, coefficients in many standard 
I 
Itop-down" demo graphic models, are in fact highly heterogeneous

and should emerge as a result of agent-agent and agent-environment

couplings. When fenility rates and population densities begin to interact

on the sugarscape, we in fact find that extinction events- central topics
of paleontology and evolutionary biology generally- can arise endoge-

nously, without the aid of meteor impacts or other outside agencies.

Finally, we expect natural selection to be observable over long times,

whic~ indeed it is in Sugarscape.

Imagine that some agent has just arrived at a new sugarscape location

as a result of following some movement rule, for example, M . After

moving, agents are permit ted to engage in sexual reproduction with

their neighbors. But they must be fenile .

Fertility

First, to have offspring, agents must be of childbearing age. Second, children 

born with literally no initial endowment of sugar would instantly
die. We therefore require that parents give their children some initial

endowment . Each newborn 's endowment is the sum of the (usually

unequal) contributions of mother and father. Dad contributes an

amount equal to one half of whatever his initial endowment had been,

and likewise for mom.2 To be parents, agents must have amassed at least

the amount of sugar with which they were endowed at birth . (In

Chapter IV we will permit agents to borrow from other agents to meet

this need.) Agents meeting these age and wealth requirements are

viduals belonging to different groups, concluding with the promised
"
proto- history.

"

�

2. Agents of the very first generation are assigned random initial endowments.
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defined as I Ifenile ." Each fertile agent executes sex rule S, which may be
stated algorithmically as follows:

A~ent sex rule S:
. Select a neighboring agent at random;
. If the neighbor is fenile and of the opposite sex and at least

one of the agents has an empty neighboring site (for the

baby), then a child is born;
. Repeat for all neighbors.

It might be that the agent has four neighbors and each is a viable partner
. In that case the agent mates with each of them before it is the next

agent
's turn to move.3 (However, this possibility is realized infrequently

in that agents, if fertile, rarely possess enough wealth to have multiple
children in a single period.)

From birth , the baby agent follows M just as mature agents do - looking 
around, accumulating sugar, and so on. The sex of each child is random
- males and females are equally likely . The child's genetic makeup

(metabolism, vision, maximum age, and so forth ) is determined from

parental genetics through Mendelian rules. As the simplest illustration ,
consider only metabolism and vision and imagine one parent to be of

type (m, v) while the other parent is genetically (M, V). Then there are
four equally likely genotypes for their child: (m, v), (m, V), (M, v), and

(M, V), the combinations given in table ill - I .
The agents produced by sexual reproduction are genetically heterogeneous

. They are heterogeneous, too, from the perspective of their environmental 
attributes; for example, their positions and sugar accumulations.

They are homogeneous with regard to their behavioral rules, since they all
execute {M , S}. But their behavior- as distinct from their behavioral rules-

is heterogeneous since each agent has somewhat different opportunities
(depending on which part of the sugarscape it occupies) as well as different 

abilities (since genetic attributes are parameters of behavioral rules).
Now all of this may seem a cumbersome apparatus. But it is the simplest 

one we could devise. In fact, it turns out that this set of local repro-

3. After observing that the sex rule S occasionally yielded multiple binhs per time
period- an outcome we had not considered before running the model- we were tempted
to augment the rule with additional conditions such as "females can have only one baby
per time period." However, given our wish to keep the rules as simple as possible, we
dedded not to add more conditions. Similarly, we have not prohibited sexual relations
between close relatives.

�



ductive rules and regulations - the sex code- gives rise to a rich variety
of global, or macroscopic, population dynamics.

To study demography on the sugarscape it is not particularly revealing
to look down on the agents as they gather sugar and reproduce sexually

. Rather, a time series of the total number of agents succinctly summarizes 

the overall dynamics. We present several time series of this type
below for various parameterizations of the rule S.

Calling each time period of the model a "year,
" we first study a population 

of agents having the following characteristics:4

. for both men and women, childbearing begins between the ages of

12 and 15;
. for women, childbearing terminates between the ages of 40 and 50;
. .for men, childbearing terminates between the ages of 50 and 60;
. for both men and women, the age of natural death is between 60

and 100;
. members of the initial population have initial endowments in the

range 50 to 100 sugar units.

Combining all of this with the movement rule M and the sugarscape

growback rule G1, population dynamics result. A typical aggregate population 
time series is shown in figure ill - I .

Note that the total number of agents is more or less constant. There

seem to be some small quasi-oscillations but these have magnitude less

than 10 percent of the overall population level.

While the population is essentially constant in this case it is important
to remember that many distinct generations of agents make up figure
ill - I . That is, the constancy of the total population is actually the result

of an approximately stationary age distribution of agents. In the artificial

society of Sugarscape we can study this distribution directly. Animation

value

�

4. For any particular agent the actual
stated range.

of a parameter is a random variable in the
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Table m - l . Crossover of Genetic Attributes in Sexual Reproduction

Metabolism

Vision mM

v (m, v) (M, v)
V (m, V) (M, V)
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Figure m - l .

({GI}, (M , S})

Agents

The Theory of Evolution Brought to Life

Agents with relatively low metabolism and high vision enjoy a selective

advantage on the sugarscape. Indeed, one can actually watch evolution in
action here by coloring agents according to their genetic attributes. First,
we color the agents according to their vision. At the start of the run there
is a unifonn distribution of vision from I to 6 among the agents. We color 

an agent blue if it has vision I , 2, or 3 and red if it has vision 4, 5, or 6.

58 SEX, CULTURE, AND CONFUCT:

Time Series of Aggregate Population under Rules

1750
1500
1250
1000
750
500
250

Time0 500 1000 1500 2000 2500

ill - I is the age distribution corresponding to figure ill - I , changing over

time .

Along the horiziontal axis of the figure are age cohort bins , while the

vertical axis gives the number of agents falling into each bin . Age distributions 

highly skewed to the left represent young sodeties in which

there is a high rate of childbirth , while those highly skewed to the right

represent aging sodeties . This age distribution , as mentioned above,
assumes an approximately stationary configuration .

Although the total number of agents is approximately constant in this

case, it is not true that the characteristics of the agents are unchanging .

We explore this presently .
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5. Notice that evolution occurs even though we have not defined an exogenous fitness
function . We will return to this point .

6. In Chapter IV we will introduce another genetic parameter that has a more ambiguous 
effect on the ability of agents to survive - a foresight parameter- and we will study its

complicated evolution there.

7. On endogenous or intrinsic fitness, see Packard [1989J and Langton [ 1989: 38J.
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Watch animation ill -2 and note how the colors of the agents change.
At first there are nearly equal numbers of red and blue agents, but

over time there is a trend toward more red (high vision) agents.
Evolution happens here because of the fertility advantage high vision
bestows on agents who have it- high vision yields more sugar income,
which begets more children.5 .

Next we do the same thing for metabolism; agents are colored blue
if their metabolism is below the initial population mean, red if it is
above. Metabolism for sugar is initially unifonnly distributed among the

agents in the range 1 to 4. But over time evolution eats away at the high
metabolism elements of the population , producing, in the end, agents
having a unifonnly low metabolism. The reader can watch this in
animation ill -3.

These genetic characteristics- vision and metabolism- affect the ability 
of agents to survive on the sugarscape in an unambiguous way; ceteris

paribus, high vision out-gathers low vision and high metabolism makes
survival more difficult . Thus the direction in which the mean values of
these characteristics move evolutionarily is intuitively clear.6 A time
series plot of the mean vision and metabolism from animations ill -2 and
ill -3 is. given in figure ill -2.

This plot makes clear the speed and power of evolutionary process es
on the sugarscape. interestingly, the average metabolism falls faster than
the average vision rises. Moreover, the increase in vision- evolutionary
"
progress

"- is not strictly monotone; there are short periods during
which the mean actually decreases!

Our population of agents (each of whom possess es its bundle of genetic
attributes) can be fruitfully thought of as evolving according to a kind of

genetic algorithm. This is so because our sex rule, 5, involves crossover of
the parents

' 
genetic attributes. However, we have nowhere explicitly

defined a fitness function. Rather, we have merely stated rules of reproduction 
and, from this, endogenous fitness emerges (locally) on the sugarscape.

It emerges from agent-environment and agent-agent interactions'?

In fact, it is not clear that "fitness" abstracted from all environmental
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Mean Vision and Metabolism6543210 200 400 600 800 Time

8. Ackley and Uttman [1992] perform a related experiment in their anificial ecology.
9. On conceptual difficulties surrounding the notion of fitness and related issues, see

Sober [1994] and Cohen [1985].

conditions can be usefully defined. To illustrate this point , suppose we-

as gods of Sugarscape- simply set the agents
' vision to some high level,

boosting their foraging efficiency and, through 5, their reproductive
rates. On one reading, the average fitness in society would appear to be

higher than before. But suppose these "fitter " 
agents bring on their own

extinction- through a combination of overgrazing and explosive reproduction
! Then it obviously was not so "fit " after all for everybody to have

exceedingly high vision.8 Sustainable co evolution with one's environment is a

necessary condition for "fitness,
" if we wish to retain this term at all.9

Sugarscape invites us to conceive of fitness as another emergent property
, not as something- such as vision- that can be detemlined by inspection 

of individuals in isolation.

Our concerns in this section have been with the genetic composition
of the population . What of population levels? This is of course a crucial
issue for policy and a major ingredient of the "

proto-history." What

Figure m-2. Evolution of Mean Agent Vision and Metabolism under
Rules ({GI}, (M, S})



Figure m -3.

({GI), (M , S})

Agents

Small Amplitude Population Oscillations under Rules

detennines population growth and how does it interact with other variables

, such as fertility ? We now return to population dynamics proper.
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Regimes of Population Dynamics

More interesting than the constant population level of figure m -1 and the

corresponding stationary age distribution shown in animation m -1 are

situations in which birth rates and population size may vary periodically.

This leads to a distribution of ages oscillating between two limiting distributions

. It turns out that such an outcome can be produced by employing 
sex rule S with a single change to the parameters: For both men and

women, fertility terminates 10 years earlier than before; that is,

. for women, childbearing tenninates between the ages of 30 and 40;

. for men, childbearing tenninates between the ages of 40 and 50.

In this case the sex rule produces the time series given in figure m -3.

Note the fairly regular osdllations. These are bounded in amplitude,

and the population never falls below about 250. The period of the oscillations 

appears to be around 200 years. Perhaps the most interesting feature 

of this cyclic aggregate behavior is that it is produced completely
"from the bottom up

"- through the individual actions and interactions



of myriad agents. 10 Furthermore , given that the average agent
's lifetime

is approximately 80 years, the 200-year period of the oscillation means
that no single agent ever participates in an entire population swing.

There are other ways to produce population oscillations on the sugarscape
. If we restore the previous limits on the ages at which infertility

sets in but reduce the amount of sugar necessary for reproduction to the

range 10 to 40, we get the population trajectory depicted in figure ill -4.
Now the amplitude of oscillation starts out at over 1000, gradually

diminishing to approximately 800. The frequency of these oscillations is

approximately 125 years. Compared with the previous oscillations these
are much more energetic.

Finally, when the variations in S that produced figures ill -3 and ill -4
are combined- decreased duration of fertility and decreased wealth

requirements - the population may oscillate so severely that, at some

point , a minimum population occurs that has too little diversity or is spatially 
too thin (that is, permits too little mating) to re-initiate a cycle of

growth . Such an outcome is shown in figure ill -5, where the society suffers 
extinction after completing three growth surges.

Agents17501500125010007505002500 500 1000 1500 2000 2500 Time

�

10. Over the 2500 time periods represented in figure ill -3, some 12,500 agents inhabit 
the sugarscape.
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Figure m -4. Large Amplitude Population Osdllations under Rules

({GI}, {M , S})



complexpopulation
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Figure m -.5. Severe Population Swings Leading to Extinction under
Rules ({GI}, {M, S})Agents17501500125010007505002500 1000 1500 2000 250~ime

�

11. Recently Hastings and ffiggins [1994] have obtained very
dynamics in a spatially distributed ecological model.

In many fields there are ongoing debates concerning the role of

endogenous (internally generated) versus exogenous (externally

imposed) factors in explaining important phenomena. In paleontology
and related fields there are longstanding exogenous-endogenous
debates about extinction events. Do they require external shocks, or can

the internal dynamics of the system itself bring them about?ll Our

agent-based modeling suggests that internal dynamics alone are sufficient
to generate cataclysmic events.

We summarize the various regimes of population dynamics described

above in figure ill -6.

Clearly, a great variety of macroscopic dynamics can be produced by
this simple model. In subsequent chapters we will study ways in which

population dynamics are coupled to other social process es.

Nature and Nurture: The Genetic Effect of Inheritance

What is the relationship of social institutions - such as property rights-

to process es of biological evolution ? This is the type of interdisciplinary

question that traditional fields do not normally address. Biology does not
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include economics and vice versa. But in an artificial society we can

study biology and economics at once.
In the runs described above, when an agent dies all its wealth simply

disappears. We saw evolution at work and watched as average metabolism 
fell and average vision rose over time. Now let us allow agents to

pass their accumulated holdings of sugar on to their offspring when they
die; that is, we pennit inheritance. Formally, this involves defining a
new rule of agent-agent (parent-child) interaction .

A~ent inheritance rule I : When an agent dies its wealth is equally 
divided among all its living children .12

How does this sodal convention affect biological evolution- in particular,
what happens to the trajectories of average metabolism and average
vision over time? We have rerun the model under exactly the conditions
that produced figure ill -2, only now letting rule I be active. Time series
for average vision and metabolism have been overlaid in red on those of

figure ill - 2 in figure ill - 7 .

In the case of vision the message is dear : Inheritance retards selection.

Agents who might otherwise have been "weeded out" are given an

Figure m -6. Regimes of Population Dynamics under Rules

({GI}, {M , S}) for Various Parameters

Infertility AgeAgents500050Agents500. 1500.:~ ~'~OO Orv~i 1000500rV~tTime 500~~~~~~Time

Agents

1500.
1000.
500''

rV
' --- -"-""~--"-./ 

T .0 1000 2000 J.meI
0 1000 2000 Time

Agents

Endowment

�

12. In the Sugarscape software system, other inheritance schemes may be selected by
the user, including division of wealth among sons, daughters, or friends.
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Figure ill -' . Evolution of Mean Agent Vision and Metabolism under
Rules ({GI}, {M, 5, I})Mean Vision and Metabolism654321

Time

Genealogical Networks

�

13. Brittain [ 1977, 1978] analyzes inheritance data for the United States.

advantage through inheritance. However, it does not seem that inheritance 

has a comparable effect on metabolism, given how the two

(lower ) curves for this genetic attribute ultimately meet.

Interestingly, some H Social Darwinists" 
oppose wealth transfers to the

poor on the ground that the undiluted operation of selective pressures is

Hbest for the species.
" 

Conveniently, they fail to mention that intergenerational 
transfers of wealth from the rich to their offspring dilute those

very pressures.

Inheritance raises the Gini coefficient in society- inequality grows
under inheritance. This is shown in animation ill -4.

In the previous chapter we noted that the Gini ratio produced by the

rule system ({GI}, {M , R[60.IOO]}) was small in comparison to that of real

economies. With inheritance the Gini ratio is far higher, reaching as high
as 0.743 here.I3

In Chapter n a neighborhood network was defined. Here the sex rule

provides a natural basis for a well -known social network , the "
family



Animation m - 4. Evolution of the Lorenz Curve and Gini Coefficient
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Genealogica JAnimation m -5.

({GI), {M, 5})

Evolution of . Networks under Rules



Process es

Our simple agents may not yet seem quite human since all they do is

move, eat, and procreate. In this section we give our agents internal

states representing cultural factors and augment their behavioral repertoire 

with simple local rules for cultural interchange. This proves sufficient 

to produce agent populations having dynamic, heterogeneous

cultures. Then, given that any two agents may be either similar or different 

culturally , it makes sense to talk about distinct cultural formations

or tribes of agents. Indeed, we willilgrow
" such tribes here I Ifrom the

bottom Up."15

Cultural

�

14. This is implemented by, among other things, having each agent keep pointers to all

of its children.
15. Axelrod [1995] studies a bottom-up model of culture in which the agents maintain

fixed positions on a two-dimensional lattice. Axtell et al. [1996] discuss an implementation 

of Axelrod's culture model in Sugarscape and the use fulness of such N~ocking
" 

experiments 

for agent-based social sdence.

SEX, CULTURE, AND CONFLICT: THE EMERGENCE OF HISTORY 71

tree." This is depicted in animation ill -5 by drawing a line from every

parent to each of its children .14 The initial population is colored black.

When a member of this population has a child, the new parent is colored 

red, the child green. Agents who are both parents and children are

colored yellow. (Note that members of the initial population can never

be yellow.)
It is interesting to watch the evolution of such genealogical networks.

At the outset there are no connections since, in the initial population , no

agents are related. However, after several generations, when none of the

initial agents remains, all the agents on the sugarscape have some definite 

genealogical lineage. Notice that average fertility and the standard

deviation in fertility both vary substantially in the course of this run .

We have made an initial foray into agent-based demography. The

range of phenomena obtained is heanening. Clearly, this is a rich area

and our effons barely scratch the surface. With this first ingredient of the

proto - history - sexual reproduction and endogenous population

dynamics- in hand, we now proceed to the second, the formation of

cultural groups.



Cultural Transmission

Consider an agent who has just landed at some site on the sugarscape.
That agent- let us call her Rose- has up to four von Neumann neighbors 

(as discussed in Chapter II ). For illustration , imagine she has two;
call them A and B. Cultural transmission might proceed in a great variety 

of ways. We will adopt the following tag-flipping scheme. First, a

neighbor is selected, say neighbor A. Then, one of Rose's tag positions is
selected at random. Suppose it is position six and suppose Rose has a
1 at that position- a cultural tag of 1. Then, if neighbor A has a tag of 0
at that position (its position six), it gets flipped to Rose's value of 1. If,
at that position, neighbor A already matches Rose, no flip occurs.
Now Rose moves on to neighbor B. Again, one of Rose's tag positions is

.

�
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Cultural Tags

Recall that every agent is born with a genetic endowment: a metabolism
, a vision, a sex, and so forth. Although the distribution of these

genetic attributes changes from generation to generation, the genetic
makeup of any particular agent is fixed over its lifetime. Of course, in
reality, important attributes (for example, tastes) do change in the course
of one's life.16 We wish to capture process es of this sort. So beyond its
fixed genetic endowment, each agent is born with a structure that represents 

its cultural attributes. This is a string of zeros and ones.17 The
length of this nongenetic string is the same for all agents. IS For example,
an agent might have a cultural string consisting of 10011010011. We
will refel,' to each element of the string as a tag and will often call the
entire structure a "tag string,

" or simply the agent
's "tags.

" 
Agents can

change one another's tags, which causes the distribution of tags in society 
to change over time.

16. In fact, there is a longstanding debate in economics as to whether or not preferences
for commodities change during one's life. This is a topic to which we will return in Chapter
Iv; where we use the cultural exchange apparatus described here to model preferences
that vary.

17. The idea that cultural attributes might be profit ably modeled as if they were alleles
on a cultural chromosome- called "memes W 

by Dawkins [1976: 206]- has been studied
systematically by Cavalli-Sforza and Feldman [1981] and applied to problems of gene-
culture co evolution, such as the lactose absorption problem [Feldman and Cavalli-Sforza,
1989]. Related work includes Boyd and Richerson [1985].

18. In the Sugarscape software system, the string length is a userspedfiedparameter.
We have experimented with lengths from 1 to 1000.
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Cultural Groups

Having fixed on a tag transfonnation rule, a separate issue is how to

define groups. As usual, we choose to do it in a simple fashion.

Group membership rule (ta~ ma.lority): Agents are defined to be

members of the Blue group when Os outnumber 1 s on their tag

strings, and members of the Red group in the opposite case.2O

19. Many other cultural transmission rules are possible. An agent might flip n of its

neighbors
' 
tags, not just one, as above. Or, reversing roles, it could be neighbors who flip

the agent
's tags, k at a time. Or, agents and neighbors could swap tags, and so on. Eigen and

Winkier [1981] have considered a variety of rules in the guise of "statistical bead games.
w

20. Many other rules for group membership are possible. One might identify panicular

positions- or sequences thereof- with certain groups. Tag position five might encode an

agent
's religion (0 for Muslim, 1 for Catholic). Group membership could require tag unanimity

, with one tribe having ali Os and the other having all 1 s. For tag strings of length
11, one three-group scheme is given below.

Agent Groul2 Number of Zeros on String
Blue 0 - 3
Green 4 - 7
Red 8 - 11

By increasing the string length and introducing considerations of tag ordering, very refined

schemes become possible.

SEX, CULTURE, AND CONFLICT:

�

selected at random. If, at that position, neighbor B already matches Rose,

no change is made. Otherwise, neighbor B
's tag is flipped to agree with

Rose's tag at that position. Rose's turn is then over, and it is the next

agent
's turn to flip its neighbor

's tags. A summary statement follows.

Cultural transmission rule (ta~-flippin ~):
. For each neighbor, a tag is randomly selected;
. If ~ e neighbor agrees with the agent at that tag position, no

change is made; if they disagree, the neighbor
's tag is flipped

to agree with the agent
's tag.19

Now, imagine that we start with a primordial soup of agents with random 

genetics, random tag strings, and random initial positions on the

sugarscape. In the course of an agent
's life, its movement, based on the

sugar drive, brings it into the neighborhoods of all sorts of other agents,

who may flip its tags, just as we, in the course of our lives, may be influenced
- in our tastes or beliefs- by contact with other individuals .



Notation

We have been denoting all rules with bold-faced letters (for example, M
for movement ). In principle, we could allot separate symbols for our cultural 

transmission (tag-flipping ) and group membership (tag majority )
rules. But, since we will only employ these rules together, we collapse
them into a single symbol, K , which denotes this combination .

21. In order to keep this rule unambiguous the number of tags should be odd.
22. For a spatially segregated population engaged in cultural transmission according to

rule K it can be shown that a monochromatic state is an absorbing state of the process. If
some (small) rate of cultural tag mutation is introduced, then the system will hover near
one of the monochromatic states, occasionally changing colors completely. Similar dynamics 

arise in a variety of contexts; see Arthur [1988, 1990], Arthur, Ermoliev, and Kaniovski
[1987], and Kaniovski [1994].

�

Cultural Dynamics

Recall that one component of the "
proto -history

" is the formation of

spatially segregated, culturally distinct groups. Are the simple rules elaborated 
above sufficient to generate such outcomes? Returning to the familiar 

sugarscape, let us begin with a population of agents with random

genetics, random tag strings each of length eleven, and random initial
lo.cations. The sugarscape grows back at unit rate. Agent movement is

governed by rule M (each agent moves to the nearest unoccupied site

having largest sugar within its vision and gathers the sugar) and sex is
turned off. In the animations that follow agents are colored according to
their group, with Blues colored blue and Reds colored red. A typical cultural 

evolution of this anifidal sodety is shown in animation ill -6.
The animation tenninates with all agents Blue after some 2700 time

periods. If, as in this run, the initial population segregates spatially-

with separate subpopulations hiving separate sugar heights- then each
such subpopulation will ultimately converge to pure Blue or pure Red.22

Thus, K is sufficient to generate cultural groups.
One way to monitor tag-flipping dynamics is to use a histogram displaying

- - at each time- the percentage of all agents having Os at each

74 SEX, CULTURE, AND CONFLICT: THE EMERGENCE OF HISTORY

SO, an agent with tag string 01010001010 would be a Blue, while one
with 01001110101 a Red.21 Since tag order is irrelevant here we might
call this a "voting rule ."



Animation m -6. Tag-Flipping Dynamics under Rules ({GI}, (M, K})
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position on the tag string. Suppose we freeze such a histogram at some

instant in the tag-flipping process, as shown in the first frame of animation 
ill - 7. The horizontal axis is divided into eleven bins, one for each tag

position. The height of the bin gives the percentage of agents having a 0

at that position. So, in this example 49 percent initially have a 0 as the

third tag of their string, 55 percent have a 0 as the tenth tag, and so forth .

Of course, tag-flipping unfolds in time so the histogram is not frozen but

evolves as the reader will see by running animation ill - 7. This dynamic

histogram gives tag statistics obtained from the previous animation .

For some tag positions the percentage of all agents having a zero ultimately 

converges to zero (all agents have a 1 there) or one hundred (all

agents have a zero there). Of course, once either of these "unanimous"

states is reached, there can be no further tag-flipping since there is no

tag diversity at that position. In short, there is "lock-in ."

Figure ill -8 shows a plot of the fraction of Blue agents over time. Note

that long-run convergence to a single group need not be monotonic ;
wild fluctuations may occur en route to equilibrium . As the length of the

cultural chromosome increases, so does the time required for convergence

. Similarly, adding agents increases convergence time.

Now, two individuals might each consider themselves" American" culturally

, while differing politically, religiously, or in other respects. An
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Figure m -8. Typical Cultural Tag Time Series Realization under Rules

({G1), (M, K})



78 SEX, CULTURE, AND CONFUCT:THE EMERGENCE OF HISTORY

interesting feature of this agent group membership rule is that agents
can be very different culturally , measured position-by-position, and yet
be members of the same group. To see this consider two agents having

tag length five. Suppose the first has tag string 00011 and the second has

tags 11000. These two agents have but a single tag in common, the third

one, and yet they are both Blue since Os predominate. All agents can be

the same color (as in figure ill -B) without being culturally identical. A

corollary of this is that a pair of Blues can produce a Red agent. How can

this happen? Imagine a Blue agent (who is the flipper) and a Blue neighbor 

(the "flippee,
" as it were) with the following tag strings of length five:

Agent
's tag string

Neighbor
's preflip tag string

Ultimately, we want to have cultural transmission operational at the

same time the sex rule is active, so we need some way to specify the

state of a newborn child's cultural tags. The transmission of cultural

attributes from parents to children is termed vertical, as against the horizontal 

transmission we have been discussing.

Blue

Blue

10100
01010

Vertical Transmission of Culture

When sex rule S is active, a child's tag string is fonned by comparing the

parents
' 
tags at each position and applying the following rule: If the parents 

have the same tag (both have 0 or both have 1), the child is

assigned that tag. If, however, one parent has tag 0 and the other has tag
1, then we "toss a fair coin." If it comes up heads, the child's tag is 1, if

tails, it is O. All of this is summarized in table ill -2.23

�

23. Those with a background in population genetics will notice that this is strictly analogous 
to a random mating table for one locus with two alleles.

Each is Blue since Os outnumber Is. But suppose 
"God" 

(the random

number generator) picks tag position three. Since the agent has a 1

there, it flips the neighbor
's tag to 1 at that position, resulting in the

neighbor
's new tag string: 01110. But now Is outnumber Os, so the

neighbor turns Red! Once more, a simple rule- here the tag-flipping
rule- produces interesting results.



Probability that a child's tag is
Parents' tags 0 1
Mother 0, father 0 1 0
Mother 0, father 1 1/2 1/2
Mother 1, father 0 1/2 1/2
Mother 1, father 1 0 1

This procedure is applied at each position, resulting in a cultural
endowrnent- a tag string- for every newborn child. Of course, once the
child is out on its own all agent behavioral rules apply, including K . Thus
horizontal transmission will soon modify the child's initial , vertically
transmitted, tags.

Networks of Friends

In Chapter n we defined agent neighbor networks and showed how
these. change over time. Earlier in this chapter we displayed genealogi-

cal networks. Here, given that the agents are flipping tags with their

neighbors as they move around the sugarscape, a natural notion of
u friend ship

" arises. Agents who at some point are neighbors and are
close culturally are defined to be friends.24 When an agent is born it has
no friends. However, in moving around the landscape it meets many
agents- as neighbors - and interacts with them culturally . Those agents
with whom it interacts and who are closest to it culturally are ones it
remembers as its friends.25 Then, if one draws lines between friends, one
has a friendship network .

To implement this in Sugarscape, we employ the Hamming distance to
measure the closeness of cultural tag stringS.

26 Each agent keeps track of

24. We offer this definition of "friendship
" as a simple local rule that can be implemented 

efficiently, not as a faithful representation of current thinking about the basis for
human friendship.
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Table m -2.. Probability That a Child
Born, Based on the Parents' Tags

I Receives a 0 or 1 Tag When

�

�

25. In the agent object this is implemented as a pointer to the friend agent (see
Appendix A for more on the object-oriented implementation of the agents).

26. The Hamming distance between two (equal length) binary strings is obtained by
comparing the strings position-by-position and totaling the number of positions at which
they are different. Therefore, two strings having a Hanuning distance equal to zero are
identical.



27. Occasionally a line across the entire lattice is observed. Since the sugarscape is a

torus, an agent at the extreme left of the lattice may be a friend of an agent at the extreme

right, yielding a friend connection line that spans the entire lattice.

28. There are aCtually two distinCt ways to keep track of friends, producing somewhat

different piCtures. In animation ill -8, once an agent stores another as its friend it never

checks to see whether or not the agent continues to be close culturally once the two agents
cease to be neighbors. That is, the agent

's list of friends can become highly anachronistic

as both it and its friends engage in cultural exchange over time. An alternative way to

implement friends would be to keep updating the cultural closeness of friends each time

period, although this would involve spatially nonlocal communication .

29. Recently Holland [1993] has studied the effeCts of tags on social interaCtions in an

agent-based model.

�
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the five agents it has encountered who are nearest it culturally ; these are

its friends. Each time an agent encounters a new neighbor the agent
detennines how close they are culturally and, if the neighbor is closer

than any of the agent
's five friends, the neighbor displaces one of them.

Drawing connections between friends yields the network shown in animation 

ill -8.27

Many variants on this general idea are possible.
28 For instance, instead

of connecting all friends one could draw lines only between mutual

friends; that is, a line would connect agents A and B only if A considers

B as a friend and vice versa. Another variation would be to connect only
best friends; that is, A must consider B to be its best friend----closest culturally

- and B must think the same of A. Finally, note that whether two

agents are friends or not has no effect on their behavior. In this sense the

network of friends is external to either the cultural exchange process or

the friend assignment rule. A natural extension of the Nnetwork-of-

agents
" 

concept would be to permit regular agent-agent interaction over

such networks, reinforcing positive interactions and perhaps breaking
connections as a result of negative interactions, a kind of Hebbian picture

.29 In this way the networks take on a feedback flavor; interagent
cultural transmission begets networks of friends, which in turn modify
the transmission dynamics.

Networks such as those we have described manifest themselves in the

real world in many important ways. Politically, restrictions on freedom

of assembly, freedom of speech (press censorship), and freedom of

movement (internal passport requirements) are standard tactics of

repressive governments. The main aim of these measures is to keep individual 

dissenters- of which there may be a great many- isolated from

one another, to keep them from connecting with other dissenters, and so
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Evolution of a Network of Friends under Rules



Combat

The cultural process es described above have proved sufficient to generate
tribes- distinct cultural formations of agents. In this section we pennit
combat between agents from different tribes.3O We do this by modifying
the movement rule.

Specifically, imagine being a Blue agent. And suppose that within your
range of vision there is a lattice position of sugar height 3, and that there
is a Red agent sitting at that position. Then, if you take over that position

, you take in the 3 sugar units plus some additional reward from preying
upon the Red agent. One possibility is that you get the total accumulated

sugar wealth of the agent. Or you might get a flat reward of, say, 2 sugar 
units. In the latter case, the full value of taking over the position

would be 3 + 2 = 5 sugar units. We will examine both types of reward
rules. First, however, we need to establish reasonable conditions under
which agents can prey on members of the opposite tribe.

To begin, it does not seem plausible that a "tiny
" 

agent (one with little

accumulated sugar) should be able to prey on a "huge
" 

agent (one with

vast accumulated sugar). At a minimum, then, we require that the predator 
be bigger than the prey in terms of accumulated sugar. It turns out

that, to produce interesting dynamics, something more is required. In particular
, if you are a Blue agent then you can plunder a Red agent-call

him Rollo- only on two conditions. First, you must be bigger than Rollo.

But second, there must be no other Red agent within your vision bigger
than you will be after you defeat Rollo. In that case, we define the attack

site as being invulnerable to retaliation. This second requirement provides

�

30. For an interesting discussion of tribal warfare from an anthropological perspective,
see Ferguson [1992].

been elaborated , let us turn to combat .
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to thwart the emergence of an organized community of dissenters, conscious 

of their numbers. How do changing political borders and "information 

revolutions" 
(for example, the Internet ) affect the emergence of

groups? How does "samizdata" spread across a landscape? Artificial societies 

allow us to study such questions systematically.

Now that rules for sexual reproduction and cultural exchange have



A~ent combat rule Cn
visionpermits

Reward Equal to Accumulated Wealth

Indeed, in our first combat run we specify that the entire accumulated
wealth of the prey goes to the predator; C~ is in effect. Allowing infinite
lifetimes, predators can accumulate tremendous power under this rule.
A type of increasing returns is evident- the bigger you are the faster you
grow. Beginning with two separate tribes, social evolution under this
reward rule always goes to one of three patterns: Blue eradicates Red,
Red eradicates Blue, or small colonies (as small as one agent) of Reds
and Blues coexist, each on its own mountain peak. Interestingly, Reds
and Blues usually switch mountains in the course of the run . Animation
m -9 shows an evolution to Blue dominance.

Starting from different initial conditions, animation m - lO shows an
evolution to spatially segregated Blue and Red "colonies,

" each on its
own mountain peak, with a small duster of low vision Blues subsisting
in the lowlands of the southwest.

in the four prindpallatticeLook out as far as

directions;
. Throw out all sites occupied by members of the agent

's own
tribe;

. Throw out all sites occupied by members of different tribes
who are wealthier than the agent;

. The reward of each remaining site is given by the resource
level at the site plus, if it is occupied, the minimum of a and
the occupant

's wealth;
. Throw out all sites that are vulnerable to retaliation;
. Select the nearest position having maximum reward and go

there;
. Gather the resources at the site plus the minimum of a and

the occupant
's wealth, if the site was occupied;

. If the site was occupied, then the former occupant is considered 
"killed "- permanently removed from play.

Note that the rule Coo implies that the aggressor receives the full accumulation 
of the defeated agent.
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an element of deterrence, which enriches the dynamics significantly. A
fonnal statement of the combat rule, for any reward a, is as follows:
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Notice that the mountains have, indeed, changed hands in these runs.
In other words, no stable Hbattle front " 

emerges under this reward rule .
If, however, the reward rule is modified, qualitatively different patterns
of conflict become possible.

Reward Equal to a Fixed Value

Here, rather than the entire accumulated wealth of the victim , the conquering 

agent receives a fixed sugar reward of 2 sugar units per kill ; that is,
the combat rule is C2. To generate sustained combat between tribes, we
fix the population at 400 agents by reintroducing the replacement rule,
R[60,I OO J' from Chapter ll . Recall that this institutes a maximum lifetime

uniformly distributed between 60 and 100 years, and when an agent
dies it is replaced by a random agent of the same tribe (one with randomly 

chosen vision, metabolism, and initial sugar endowment ).
Animation ill - II shows the result.

Now we do get coherent battle fronts. Penetration is minimal and a

prolonged 
"war of attrition " 

ensues, not the stunning blitzkrieg of
animation ill -9.

Effect of Rule Changes on Emergent Structures

Clearly, individual behavior under the combat rule is different from individual 
behavior in the no-combat case. But, how does the prospect of

combat affect emergent collective structures? Recall, for example, the collective 
waves of animation ll -6. An initial block of Blue agents with maximum 
vision of ten (a relatively high value) propagated in a sequence of

northeasterly waves. If we turn combat off and begin with opposed blocks
of Blue and Red agents----in the southwest and northeast comers of the

sugarscape- each population will propagate, again on a diagonal,
toward the center in collective waves that collide and interpenetrate as shown
in animation ill -12.

Now, suppose we turn combat on, substituting rule Ca for rule M . Do
waves still result? Animation ill -13, with a = 2, gives the answer.

Agents are deterred from raring forward to attack smaller agents of the

opposed tribe by the presence of larger opposing agents within their
vision. Precisely the factor- relatively high average vision- that produced 

the waves in the no-combat world now accounts for their absence.
To complexity scientists, the moral is dear: When you change local rules,
you may change emergent collective structures. For policymakers, there
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Combat and Assimilation: Two Modes of Group Defense

To examine how combat and cultural assimilation (tag-flipping ) can
interact, recall animation ill -9. This was a pure combat simulation,

beginning with segregated Red and Blue populations, one on each sugar 
mountain . The combat reward rule was that a victor acquires the entire

accumulated wealth of the vanquished agent. In animation ill -9 the result
was Blue eradication of Red. In particular, we saw that once a suffident -

ly big Blue agent penetrated Red sodety, there was no way of stopping it ,
no way for any individual Red to defeat it in combat. But, what if that
Blue invader's tags were being flipped while it was rampaging through
Red sodety? Could the Reds convert it to a Red before it ravaged their

sodety? Let us see. In animation ill -14, everything is exactly as in animation 
ill -9 (Blue takeover), except that cultural process es are unfolding.

Now, with cultural exchange process es active we do not see the same

runaway to hegemony. Although a Blue agent certainly penetrates Red
s<?detyand (through early combat victories) quickly acquires an insurmountable 

combat edge over any Red, the Blue invader's cultural tags
are all the while being flipped- indeed, predsely because the Blue
intruder is surrounded by Reds, the latter will get many opportunities to

flip the invader's tags. The defending Reds are in fact able to convert, or
assimilate, their attackers before being conquered. Later in this run , the
Blue tribe defends itself the same way.

Once a huge invading Blue is converted to Red, it contributes a substantial 
measure of deterrence to the Red tribe. So, for deterrence, it is

best if the big new convert is deployed far forward, dose to the threatening 
Blue hordes. However, since the new convert might be "

just
barely Red"- by only one or two tags- it is not yet terribly trustworthy ;
it could easily be flipped back by a patch of neighboring Blues. Of course,
before its conversion, the big former Blue might well have penetrated
deep into the very center of Red sodety, where, as a new recruit, its

complete ideological conversion- re-education- can proceed without
"distraction,

" as it were. The dynamics, ultimately, depend on the interplay 
between tag length and the combat reward.

Clearly, the longer the tag string, the longer it will take to convert an
intruder . A total fanatic (one with tag string of "infinite " 

length) can
never be converted. By the same token if the combat reward is very
modest- say one sugar per kill instead of the entire wealth of the

90 SEX, CULTURE, AND CONFLICT: THE EMERGENCE OF HISTORY

is a corollary: The most effective way to alter collective patterns of behavior 

may be from the bottom up, by modifying local rules.
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The Proto-History

The question posed at the start of this chapter was whether we can grow
a crude caricature of early sodal history 

I Ifrom the bottom up
" with

these ingredients. Recall that the proto-history
's main components are

the formation of spatially segregated tribes, tribe growth , and tribal
interaction . We submit animation ill -15 as a realization of the protohistory 

using the movement (M ), sexual reproduction (5), and cultural

(K ) rules we have now accumulated.

At first there is a small, low density, primordial 
II 
soup

" of agents with

random genetics (vision, metabolism, and so on), random cultural tag

strings, and random initial positions on the familiar twin -peaked sugarscape
. The fundamental drive for sugar produces migration to one or

another of the sugar peaks, and thus spatial segregation into two subpopulations 

in which mating and cultural transmission occur. And each

sub-population converges (Cl.1lturally) to pure Red or pure Blue; the

tribes are formed. Sexual reproduction now increases each tribe's population
, forcing Reds and Blues down from their sugar highland origins

into the lowlands between. There the tribes interact perpetually, with

collisions, penetrations, and conversions producing complex sodal histories

. There are II expansionist
" 

phases in which it looks as if one tribe

will achieve hegemony; and there are l I epochs
" of stalemate, where scattered 

border contacts and l Iassimilations" are the rule .32

31. Fon Ilal top-down models of group defense include Freedman and Wolkowicz
[1986] and Freedman and Hongshun [1988].

32. This outcome- Red and Blue tribes on opposite mountains- is realized in somewhat 
less than 1/2 of the runs of the model with rules ({GI), (M, S, K}) active. In about

1/4 of the runs, Red cultural groups come to dominate both mountains, while Blue domination 
occurs with the same frequency. (As an aside, recall from animation m-6 that two

non-communicating groups may both become Red without having exactly the same culture
.) It is also the case that extinction on one or both of the mountains occurs with some

small frequency.

�
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victim- there is much more time for tag-flipping before Blue takeover.
In short, these two fundamental modes of group defense- combat and
assimilation- trade off in interesting ways.31

While each rule of agent behavior discussed thus far- movement,
combat, cultural transmission, and reproduction- deserves much more

analysis, we have now assembled everything needed to II 
grow

" the

promised proto - history.
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Sugar and Spice

Trade Comes to the Sugarscape

Like the other animals, we find and pick up what we

can use, and appropriate territories. But unlike the
other animals, we also trade and produce for trade.

Jane Jacobs, Systems of Survival [ 1992: xi)

In 

the previous chapters we have studied simple agents having local

rules for movement, sex, cultural exchange, and combat. In this chapter
, we explore another crudal sodal behavior: trade. So far, our

methodology has been to postulate one or more agent rules and then

study the sodety that unfolds. Sometimes we presented a "target
" sodal

outcome before providing any rules (for example, the "proto-history
"
),

while at other times we argued that the rules themselves were of interest 

since they were in some sense simple or minimal (for example, the

movement rule M ).

In this chapter, we proceed somewhat differently. We draw on neoclassical 

microeconomic theory for rules governing agent trade behavior

.1 These rules mediate the interaction of infinitely lived agents who

have unchanging, well -behaved preferences that they truthfully reveal

to one another and who engage in trade only if it makes them better off

(technically, trade must be Pareto-improving ). Howeyer, instead of the

neoclassical stipulation that the agents interact only with the price system
- that is, all agents are price-takers - we implement trade as occur-

ring between neighboring agents at prices determined locally by a simple

bargaining rule} Individual agents do not use any nonlocal price infor -

1. In some agent-based computer simulations the term Ntrade" is used loosely, to
denote any interagent transfer of internal stocks, independent of whether the agents have

any internal mechanism for computing the welfare associated with such transfers. This is
not a usage of interest to economists.

2. Kirn1an [1994], in his review of the literature on economies with interacting agents,

suggests that Nmodels in which agents interact with each other directly rather than indirectly 

through the market price mechanism provide a rich and promising class of alternatives 
which may help us to overcome some of the difficulties of the standard models."

�

�
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mation in their decisionmaking. Because price fonnation is local, this is
a model of completely decentralized exchange between neoclassical agents.

Later we relax some of the least realistic aspects of the neoclassical setup

; for example, giving the agents finite lives and nonfixed preferences.
The main issue we address is the extent to which interacting agents

are capable of producing socially optimal outcomes, that is, allocations of

resources having the property that no agent can be made better off

through further trade. The artificial societies modeling approach allows
us to explore such questions systematically and reproducibly. Inparticular

, we compare the perfonnance of distinct classes of agents- neoclassical 

agents and various non -neoclassical ones. We find that neoclassical

agents trading bilaterally are able to approach, over time, a price close to
that associated with an optimal allocation. However, when the agents
are made progressively less neoclassical- when they are pemlitted to

sexually reproduce or have culturally varying preferences- the markets

that emerge generally have suboptimal perfonnance for indefinite periods 
of time.

Such results have important implications. First and foremost, the

putative case for laissez-faire economic policies is that, left to their own

devices, market process es yield equilibrium prices. Individual (decentralized

) utility maximization at these prices then induces Pareto optimal
allocations of goods and services. But if no price equilibrium occurs, then

the efficiency of the allocations achieved becomes an open question and

the theoretical case for pure market solutions is weakened.

We also investigate the effect of trade on variables studied in previous

chapters. We find that the canying capacity of the resource-scape is

increased by trade, but so is the skewness of the wealth distribution. More

agents exist in a society that engages in trade, but the resulting society is

more unequal. Furthennore , the markets that result from our local trade

rule generate horizontal inequality - agents with identical endowments

and preferences end up in different welfare states. Importantly , the welfare 

theorems of neoclassical economics do not hold in such markets.

When agents are allowed to enter into credit relationships with one

another- for purposes of bearing children- interesting financial networks 

emerge. Some agents end up as pure lenders, others as pure borrowers

, and many turn out to be both lenders and borrowers. Indeed,
entire financial hierarchies emerge within the agent society.

It seems natural to think of market process es as a fonn of social computation

, with the agents operating as distributed processing 
"nodes"

and the flow of commodities serving as inter-node communication . Each



node (agent) executes a local optimization algorithm (purposive behavior

), attempting to maximize a local objective (utility ) function through
decentralized interactions with other nodes (agents). The market as a

whole- the sodal computer- tends toward a globally optimal allocation

of goods, as if it were "attempting
" to compute such an allocation. In this

chapter we study how the success of this sodal computation depends on

agent spedfications.

Spice: A Second Commodity

129.5' 78'  129.5' 78'  129.5' 78'  129.5' 78'  129.5' 78'  

�

96 SUGAR AND SPICE: TRADE COMES TO THE SUGARSCAPE

Figure IV - I . Sugar Mountains in the Northeast and Southwest, Spice
in the Northwest and Southeast

To begin , since trade involves an exchange of distinct items between individuals

, the first task is to add a second commodity to the landscape. This

second resource, 
I 
Ispice,

" 
is arranged in two mountains opposite the original 

sugar mountains , as depicted in figure IV- l .3 At each position there is

a sugar level and capacity, as before , as well as a spice level and capacity.

Each agent now keeps two separate accumulations , one of sugar and

one of spice, and has two distinct metabolisms , one for each good . These

3. An infinite variety of other arrangements of the resources is possible, of course, and

we have experimented with various topographies. However, the configuration depicted in

figure IV- I will be used exclusively here. While the details of particular model runs are

intimately intenwined with the economic geography employed, the qualitative character

of the results does not depend on any particular topography.



metabolic rates are heterogeneous over the agent population , just as in

the single commodity case, and represent the amount of the commodities 

the agents must consume each period to stay alive. Agents die if

either their sugar or their spice accumulation falls to zero.

Welfare

where my = m] + m2. Note that this is a Cobb-Douglas functional fonn .

The metabolisms make an agent
's welfare dependent upon its biology in

just the way we want ; that is, if an agent has a higher metabolism for

the first commodity (sugar) than for the second (spice), then it views a

site having equal quantities of sugar and spice as if there were relatively 

less sugar present.

This welfare function is state-dependent insofar as the arguments

(w],w) denote accumulated quantities of the two commodities, not

instantaneous consumption. This gives the agents the behavioral characteristic 

that as they age, for example, and accumulate wealth, they
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The Agent ~ Function

W(WI' W2) = WI"
llm T W Y'

llm T,

�

4, This will be made precise below in the discussion of "internal valuations,.

We now need a way for the agents to compare their needs for the two

goods. A "rational" agent having, say, equal sugar and spice metabolisms

but with a large accumulation of sugar and small holdings of spice
should pursue sites having relatively more spice than sugar. One way to

capture this is to have the agents compute how "close" they are to starving 

to death due to a lack of either sugar or spice. They then attempt to

gather relatively more of the good whose absence most jeopardizes their

survival. In particular, imagine that an agent with metabolisms (m], m2)
and accumulations (W], W2) computed the "amount of time until death

given no further resource gathering
" for each resource; these durations

are just T] = w]/m] and T2 = w2/m2' The relative size of these two quantities

, the dimensionless number T]IT2, is a measure of the relative

imponance of finding sugar to finding spice. A number less than one

means that sugar is relatively more important , while a number greater
than one means that spice is needed more than sugar.

An agent welfare function giving just these relative valuations at the

margins is4



In other words, given an agent with some sugar wealth WI and spice

wealth W2' every position within the agent
's vision is inspected and the

agent calculates what its welfare would be were it to go there and collect 

the sugar and spice. Expression (2) says simply that the agent selects

the site produdng maximum welfare.6 As in the case of a single commodity

, if there are several sites that produce equal welfare then the first

site encountered is selected. Overall, the new movement rule for each

agent is as follows.

Multicommoditv agent movement rule M : 7

. Look out as far as vision permits in each of the four lattice

directions, north , south, east, and west;

5. Derivations in Appendix C give fonnal conditions under which an agent facing identical 

(distributions of) resource levels at distinct times in its life will rank sites differently
due solely to changes in its wealth.

6. It is possible to unify the one and two commodity cases conceptually by imagining
that in the fonner case the agents are "optimizing

" a welfare function that has just one

argument; that is, 
( )W w;m = wm.

7. We use M to symbolize all variants of the movement rule. In the Sugarscape software 

system the number of commodities, n, is a useradjustableparameter, and so M has

actually been implemented as the n-dimensional analog of expression (2).

�
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view the same resource site differently .5 This state-dependence, while a

departure from the utility function usual in neoclassical economics, is a

natural way to represent preferences for agents who do not consume

their entire commodity bundle each period.

The Agent Movement Rule in the Presence of Two Commodities

Given this welfare function , the movement rule followed by the agents
is identical to what it was in the simple one commodity case, namely,

look around for the best position and move there. The only difference in

the two commodity case is that establishing which location is "best"

involves evaluating the welfare function at each prospective site. Let s

denote a site, with xl and xl the sugar and spice levels at that site.

Fonnally, the agents perfonn an optimization calculation over the sites

in their vision-parameterized neighborhood, N VI according to

max W(w] + xl, w2 + xl ) . (2)
se Nv



�

8. Below we show that the general effect of trade is indeed to augment the carrying
capacity.
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. Considering only unoccupied lattice positions, find the nearest 

position producing maximum welfare;
. Move to the new position;
. Collect all the resources at that location.

Now we study how the addition of the second commodity affects individual 
movement dynamics. To see that the effect is profound, one need

only look at a particular run of the model, such as animation IV- I . Here
vision is uniformly distributed in the agent population between I and
10, while metabolism for each of the two commodities is unifom1ly distributed 

between I and 5. A black tail is attached to one arbitrarily chosen 

agent, a so-called observational agent, to highlight the complexity of
individual trajectories.

The agents search locally for the spot that makes them best off and they
move there. However, because of the spatial separation of the two
resources, agents move back and forth between the two types of mountains

: Staying on one mountain for an extended period of time augments
the agent

's holdings of one commodity but dissipates its holdings of the
other, forcing it to migrate. Note that if one were to average the observation

~l agent
's location over time its mean position would fall somewhere

between the two types of mountains, despite the fact that the agent
spends precious little time at such locations. That is, spatio-temporal averaging 

gives us little understanding of actual agent behavior.
The carrying capacity of this landscape is lower than in the single

commodity (sugar-only ) case, because there are now two ways to die,

namely, by running out of either resource. A common route to death on
the two -resource landscape is for an agent to run low on one of the
resources while "s.tocking up

" on the other and then find itself in a

region of the resource-scape where there is a low density (and a flat gradient
) of the needed good: having eaten its way deep into a high sugar

(low spice) zone, the agent dies of spice deprivation, for example. Most

agents in animation IV- I never suffer this fate. When spice depletion
threatens they have sufficient vision to find spice rich zones and replenish 

their stocks. Of course, there is another way agents might obtain
commodities they need: through trade.8
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Agent in the Case of Both Sugar and Spice Present under Rule

System ({GI}, {M})



Permit ting agents to trade requires a rule system for the exchange of

sugar and spice between agents.
9 When will agents trade? How much

will they trade? And at what price will exchange occur? There are a variety 

of ways in which to proceed.

The neoclassical theory of general equilibrium describes how a single
centralized market run by a so-called auctioneer can arrive at an equilibrium 

price vector for the entire economy- a set of prices at which all

markets clear. The image of an auctioneer announcing prices to the entire

economy is quite unrealistic; no individual or institution could ever possess 
either complete knowledge of agent preferences and endowments or

suffident computational power to determine the appropriate prices. And

even if market -clearing prices were somehow identified, why would all

agents use them, why would all agents be price-takers?lO

A more recognizable image is presented by Kreps [1990: 196], under

the heading 
"
Why (not ) Believe in Walrasian Equilibrium ?" He writes:

. . . we can imagine consumers wandering around a large market

square, with all their possessions on their backs. They have chance

meetings with each other, and when two consumers meet, they
examine what each has to offer, to see if they can arrange a mutually

agreeable trade. . . . If an exchange is made, the two swap goods and

wander around in search of more advantageous trades made at

chance meetings.

We implement trade in predsely this fashion, as welfare-improving (that

is, mutually agreeable) bilateral barter between agents. No use is made

of an auctioneer or any similar artifice. Agents move around the

resource-scape following M , but are now pemlitted to trade with the

agents they land next to, that is, their von Neumann neighbors. When

an agent-neighbor pair interacts to trade, the process begins by having
each agent compute its internal valuations of sugar and spice. Then a

9. Since there is no money in our artificial society, it is perhaps more accurate to
describe interagent trade as baner. Throughout this chapter we shall use the terms "trade,

"

"
exchange,

" and "banerw inter change ably. On the emergence of money in an agent-based
model see Marimon, McGrattan, and Sargent [1990].

10. That is, if cenain groups of agents can engage in welfare-improving trade between
themselves at prices other than the market-clearing ones, why would they not do so? Such

advantageous reallocations of endowments have been studied by Guesnerie and Laffont

[1978].
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Trade Rules
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Internal Valuations

According to microeconomic theory, an agent
's internal valuations of

economic commodities are given by its so-called marginal rate of substitution 
(MRS) of one commodity for another. An agent

's MRS of spice for
sugar is the amount of spice the agent considers to be as valuable as one
unit of sugar, that is, the value of sugar in units of spice.12 For the welfare 

function (1) above, the MRS can be shown to be

11. Because our agents trade at nonequilibrium prices this is a non-Walrasian model. In
particular, it is a kind of Edgeworth baner process (Negishi [1961], Uzawa [1962], Hahn
[1962], and Mukhelji [1974]; see Arrow and Hahn [1971: Chapter 13], Hahn [1982], and
Fisher [1983: 29-31] for reviews). However, the bilateral nature of our model makes it more
completely decentralized than the usual Edgeworth process since prices will generally be
heterogeneous during each round of trading. The model closest to ours is Albin and Foley
[1990], in which agents maintain fixed positions on a drcle and trade with their neighbors.
Other non-tatonnment models include Aubin [1981], Benninga [1992], Feldman [1973],
Hey [1974], Lengwiler [1994], Smale [1976], Stacchetti [1985], Walker [1984], and the simulation 

study of Takayasu et al. [1992]. Models of decentralized exchange in which the role
of money is studied include Eckalbar [1984, 1986], Friedman [1979], Kiyotaki and Wright
[1989, 1991], Madden [1976], Marimon, McGrattan, and Sargent [1990], Menger [1892],
Norman [1987], Ostroyand Starr [1974, 1990], and Starr [1976]. Stochastic models of
exchange include Bhattacharya and Majumdar [1973], Follmer [1974], Garman [1976],
Keisler [1986, 1992, 1995, 1996], Hurwicz, Radner, and Reiter [1975a, 1975b], and
Mendelson [1985]. There is a growing literature of models in which economic agents interact 

directly with neighbors; for example, see An and Kiefer [1992], Anderlini and Ianni
[1993a, 1993b], Ellison [1992], Kiefer, Ye, and An [1993], and Herz [1993].

12. Technically, the MRS is the local slope of the sugar-spice indifference curve.

�

~ (m.-mr)/mr mz/mrW, Wz_mT-
m2 m,/mr (mr-mr)/mr- W, WzmT

a W(Wl,W2) ~
MRS = ~ = aWl = ~ = !!!l = .!J. (3)

dWl a W(Wl,W2) m2wl WI 71
a W2 -m;

Note from (3) that an agent
's MRS depends in an essential way on its

~ etabolisms, that is, its biology. Earlier we noted that the quantities 71
and 72 represented the times to death by sugar and spice starvation,
respectively, assuming no further resource gathering. These quantities
are also measures of the relative internal scarcity of the two resources, in
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bargaining process is conducted and a price is agreed to. Finally an

exchange of goods between agents occurs if both agents are made better
off by the exchange. This process is repeated until no further gains from
trade are possible. I I We now present the details of this process.



Table IV-I. Relative MR Ss and the Directions of Resource Exchange

MRS A > MRSB MRS A < MRSB
Action A B A B
Buys sugar spice spice sugar- - -
Sells spice sugar sugar spice

The Bargaining Rule and Local Price Formation

Having established the direction in which resources will be exchanged, it

remains to specify a rule for establishing the quantities to be exchanged.

The ratio of the spice to sugar quantities exchanged is simply the price.

This price must, of necessity, fall in the range [MRSA, MR Ss] . To see this,

consider the case of two agents, A and B, for whom MRSA > MR Ss. Since

A will acquire sugar from B in exchange for spice (see table IV- I ), its

MRS will , according to (3), decrease as a result of the exchange, while

B's MRS will increase. But A will not give up spice for sugar at just any

price. Rather, the most spice it is willing to give up for a unit of sugar is

precisely its MRS; for one unit of sugar it is willing to trade any amount

of spice below the quantity given by the MRS. Analogously for B: it is

willing to trade at any price above its MRS. Thus the range of feasible

prices is [MRSA, MR Ss] .

A rule for specifying exchange quantities, and therefore price, might

�

�

13. Note that whether a panicular agent is a sugar buyer or seller is completely endogenous

- it depends on the MRS of the other agent with whom the exchange interaction

occurs.
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the sense that an agent whose MRS < 1, for example, thinks of itself as

being relatively poor in spice.

When two agents, A and B, encounter one another- that is, when

one moves into the other's neighborhood- the MRS of each agent is

computed. Here we treat these internal valuations as common knowledge

; that is, the agents truthfully reveal their preferences to one another

. If MRS A > MRSB then agent A considers sugar to be relatively
more valuable than does agent B, and so A is a sugar buyer and a spice
seller while agent B is the opposite.13 The general conditions are summarized 

in table IV- I . As long as the MR Ss are not the same there

is potential for trade; that is, one or both of the agents may be made

better off through exchange.



The primary result of this rule is to moderate the effect of two agents
having vastly different MR Ss.15 It turns out that it is more natural
to work with 'iT = In(p), and in describing our artificial economy below
we shall compute statistics for 'iT .16

Finally, with the price detennined, we need to spedfy the actual quantities 
of sugar and spice to be exchanged. Here we add the element of

indivisibility by stipulating that each exchange involve unit quantity of
one of the commodities. In particular, for p > 1, P units of spice are

exchanged for 1 unit of sugar. If p < 1, then 1 unit of spice is exchanged
for I Ip units of sugar.

The Trade Algorithm

Given that two agents have I I bargain ed to" a price, and thereby specified
the quantities to be exchanged, the trade only goes forward if it makes
both agents better off. That is, trade must improve the welfare of both

agents. Furthermore, since discrete quantities are being traded, and

p(MRSA,MRSB) = V MR SAM R S Bo

�

14. There exists an enormous literature on bilateral bargaining when agents have
incomplete information. A good introduction is Osborne and Rubinstein [1990], while
important papers are reprinted in Linhan, Radner, and Sattenhwaite [1992]; see also Gale
[1986a, 1986b] and Binmore and Dasgupta [1987]. Since our agents truthfully reveal their
preferences we do not make use of these ideas here. Clearly this is an important topic for
future work.

15. We have also experimented with a bargaining rule that simply picks a random
number from the interval [MRSA, MRSB]. The qualitative character of the results reponed
below is insensitive to this change.

16. To see this, note that trading 10 units of spice for one sugar (p = 10) should be
treated as equally distant from p = 1 as trading 10 sugars for one spice (p = 1/10).
With P = In(p), this requirement is met since m(10) - In(l ) = In(l ) - In(1/10).
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be called a bargaining rule since it can be interpreted as the (adaptive)
way in which two goal-seeking agents instantiate a price from the range
of feasible prices. 14 While all prices within the feasible range are " 

agreeable" to the agents, not all prices appear to be equally 
"fair." Prices near

either end of the range would seem to be a better deal for one of the

agents, particularly when the price range is very large. Following Albin
and Foley [1990], we use as the exchange price the geometric mean of the

endpoints of the feasible price range. That is, the trading price, p, is
detennined according to



A~ent trade rule T:
. Agent and neighbor compute their MR Ss; if these are equal

then end, else continue;
. The direction of exchange is as follows: spice flows from the

agent with the higher MRS to the agent with the lower MRS

while ,sugar goes in the opposite direction;
. The geometric mean of the two MR Ss is calculated- this will

serve as the price, p;
. The quantities to be exchanged are as follows: if p > 1 then

p units of spice for 1 unit of sugar; if p < 1 then I Ip units of

sugar for 1 unit of spice;
. If this trade will (a) make both agents better off (increases the

welfare of both agents), and (b) not cause the agents
' MR Ss to

cross over one another, then the trade is made and return to

start, else end.

Note that the bargaining rule constitutes step 3 of the algorithm .19

For a graphical interpretation of T, consider the so-called Edgeworth

box shown in figure N -2. Here agent A has sugar-spice endowment of

(5, 8), while agent B possess es (15, 2). The red line intersects A' s endowment 

and is A' s line of constant utility ; that is, A is indifferent between

its endowment and all other sugar-spice allocations on the red line. Any

allocation below this line is unacceptable to A since such an allocation

would yield less welfare than A enjoys at its present position. All allocations 

above the isoutility line are preferred by A to its current allocation.

17. That is, given MRSA > ) MRSB, agents stop trading if one additional trade will

make MRSA    MRSB.
18. Heretofore, we have described all rules for the agents and the sugarscape as .sim-

pIe local rules.. We would like it if the trade algorithm T could also be described in this

way, but realize that one can reason ably say that this rule, although completely local, is

hardly simple (requiring, for example, partial differentiation, computation of square root S,

and so on). Perhaps it is better described as being the simplest local rule in the neoclassical 

spirit.
19. It is possible to substitute other bargaining rules simply by repladng this step.

�
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therefore repeated exchange may never lead to identical agent MR Ss,

special care must be taken to avoid infinite loops in which a pair of

agents alternates between being buyers and sellers of the same resource

upon successive application of the trade rule. This is accomplished by

forbid ding the MR Ss to cross over one another.17 Putting all this together 

we have:ls
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Analogously, B prefers allocations that are below the blue line, its isoutil -

ity curve. From any initial endowments we can draw A' s and B's isoutil -

ity curves. For some endowments the area between the curves will be

larger than that shown in figure 1V-2, while for others it will be smaller.
When initial endowments fall on the gray line, the so-called contract
curve, the agents

' 
isoutility curves are exactly tangent- the MR Ss of the

two agents coincide. At these positions there is zero area between the

agents
' 

isoutility curves and, as a result, there are no potential gains
from trade .20

From point 1, each application of rule T moves the agents to progressively 
higher welfare states, first to position 2, then to 3, and so on until

finally they reach position 5. Additional trading, beyond 5, would cause
the agents

' MR Ss to cross over, and so is not allowed.21 When T results
in allocations for agents A and B that are on the contract curve, we say
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Figure IV-2.

according to Rule T

10

�

20. For a detailed discussion of the Edgeworth box, see Kreps [ 1990: 152- 53, 155- 56] .
21. One might reason ably wonder why we have built T to take only incremental steps

toward the contract curve, instead of jumping directly to it . One rationale is to limit the complexity 
of our agents; in making small welfare improving trades they use only the local shape

of their welfare function in the vidnity of their endowment. They then make a relatively
small trade and recompute their marginal valuations with respect to their new holdings.

Edgeworth Box Representation of 1Wo A~ents 1radin~



�

near Pareto optimality has been attained locally.

Rule T specifies how two agents interact to trade. It remains to specify
which agents interact through T. All the rules of agent interaction that

we have described so far- rules for sexual reproduction, for cultural

interchange- involve local interaction, and here we shall not deviate

from this pure bottom-up approach. When an agent following M moves

to a new location it has from 0 to 4 (von Neumann) neighbors. It interacts 

through T exactly once with each of its neighbors, selected in random 

order.23

The Sugarscape interagent trade rule can be summarized as follows: If

neighboring
' 
agents have different marginal rates of substitution then

they attempt to arrange an exchange that makes them both better off .

Bargaining proceeds and a trade price is "agreed
" to. Quantities of sugar

and spice in proportion to the trade price are specified for exchange. If

exchange of the commodities will not cause the agents
' MR Ss to cross

over then the transaction occurs, the agents recompute their MR Ss, and

bargaining begins anew. In this way nearly Pareto optimal allocations

are produced locally.

With these micro-rules in place we are now in a position to study the

aggregate or market behavior of neoclassical agents engaged in bilateral

trade. How will prices evolve in such markets? WIll trade volumes vary

regularly or erratically? Rule T stipulates that individual agents are

made better off through trade, but will the society of agents as a whole be

able to extract the full welfare benefits of trade? How sensitive will

market performance be to neoclassical assumptions about agents? These

are the questions to which we now turn .
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that local Pareto optimality has been achieved.22 When the allocations produced 

by T are just off the contract curve, as in figure IV-2, we say that

22. In this usage local Pareto optirnality is synonymous with pairwise or bilateral Pareto

optimality; see Feldman [1973] and Goldman and Starr [1982].
23. A variant of this would let an agent engage in T with a neighboring agent multiple

times during a single move. For example, sayan agent has 2 neighbors and trades with
one of them according to T, that is, until they have approximately equal MR Ss. Then the

agent turns to the other neighbor and interacts with it following T. After the second set of
trades is complete the agent

's MRS will be different from what it was at the tennination of
trade with the first neighbor, and therefore it may be feasible to trade further with this first

neighbor. The agent is permit ted to do so, and it switch es back and forth between its

neighbors until no more gains from trade are possible. In this variant, the active agent
would act as a kind of arbitrageur between its two neighbors.



Markets of Bilateral Traders

General equilibrium theory describes how a centralized market run by
an idealized auctioneer can arrive at an equilibrium price. The immediate 

question for us - having banished the auctioneer and all other types
of nonlocal information - is whether our population of spatially distributed
neoclassical agents can produce anything like an equilibrium price through local
interactions alone. It turns out that there is a definite sense in which they
canl However, the character of the equilibrium achieved by our agents
is rather different from that of general equilibrium theory, for the
markets which result produce less than optimal agent welfare- the

potential gains from trade are not fully extracted- despite essential con-

vergence
'to the general equilibrium price. Furthermore, when we relax

certain neoclassical assumptions (infinitely lived agents, fixed preferences
) overall market performance is further degraded.

Neoclassical Agents and Statistical Price Equilibrium

On the sugar-spice landscape we randomly place a population of 200

infinitely lived agents, having Cobb-Douglas utility functions given by
(I ), with behavioral rules M and T. Metabolisms for sugar and spice are

uniforn1ly distributed in the agent population between I and 5. This has
the effect of making preferences symmetrical, that is, there are as many
agents who prefer sugar to spice as there are who prefer the reverse.
Vision is also uniforn1ly distributed between I and 5. Initial endowments
are randomly distributed between 25 and 50 for both sugar and spice
and are thus also symmetrical with respect to the two resources.
Therefore, since there is approximately the same amount of sugar and

spice present on the landscape, the symmetry of preferences and
endowments implies that the general equilibrium price of sugar to spice
will be about I , varying somewhat from time period to time period} 4

To display the economic behavior of our artificial market, it would not
do to simply 

"look down from above" on the landscape of agents, as in

past animations, since this fails to depict either the formation of prices or
the exchange of goods. Instead, we track the time series of average trade

price per period} 5 Such a plot is shown in figure N -3.
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�

24. Below we investigate how the general equilibrium price varies, and plot the

dynamic supply and demand curves for our anificial economy.
25. We use the phrases Naverage trade price

" and Nmean price
" to denote the geomet-

ric mean of all trade prices that occur in a given period.
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infinite.
27. Because agents are infinitely lived in this run of the model, the

in price will never reach a stationary value but will continue to fall.
standard

Time

Another way to look at how prices converge toward the general equilibrium 
level is to plot the standard deviation in the logarithm of the

average trade price per period. For the previous run , this is shown in figure 
IV-5. Here, and in all subsequent plots of price standard deviation

time series, raw data are shown in black with smoothed data in red.
While the standard deviation in price never vanish es, it does tend to stabilize 

at a relatively small value, averaging about 0.05 by t = 1 000} 71n this
case it would seem unobjectionable to say that a price equilibrium 

is essentially attained by this market. Economic equilibrium emerges
from the bottom up.

�

26. Actually, the distribution of trade volume is non station arv when a2ent lifetimes are

deviation
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Typical Time Series for Avera~e Trade Price under RuleFigure 1V-3.

System ({G1), {M, T})

Mean Price
2

1.2

1.

Note that initially there is significant variation in prices but that over
time prices tend to bunch around the "market-clearing

" level of 1. The
total volume of trade is quite large, with nearly 150,000 trades occurring
over the time shown in figure 1V-3. There is extensive variation in trade
volume per period, as shown in figure 1V-4. Trade volumes are distributed 

approximately log normally, with a few big trade periods and lots of
smaller ones.26
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rformance Toduced

Carrying Capacity Is Increased by Trade

In Chapter II we found that the notion of carrying capacity emerged naturally 

on the sugarscape}
9 Here we study the effect of trade on the carrying 

capacity. We do this by noting the number of agents who survive

in the long run, first with trade turned off, then with it turned on. Figure
1V-6 .is a plot of the dependence of carrying capacity on average agent
vision, the lower line representing the no-trade case, the upper line the

with -trade case.

Clearly, trade increases the carrying capacity. This result is in accord

with intuition . It was argued earlier that trade was a way for agents to

avoid death due to a deficiency in one commodity. To see how this is

so, imagine a pair of neighboring agents. Agent I has an abundance of

sugar but is close to death by spice deprivation; Agent 2 has a surfeit of

spice but is on the verge of death through sugar deprivation. If trade is

forbidden then each will die. Clearly, however, an exchange of Agent I
's

sugar for Agent 2
's spice will keep both alive. This is how trade increases 

the carrying capacity of the sugar-spice scape.

Let us now discuss the nature of the equilibrium produced by com-

28. It is usual in economics to associate the Smithian invisible hand with welfare properties 
of markets, and we do this below. Our usage here has more in common with what

Nozick [1974, 1994] calls an Ninvisible-hand process.
. For an excellent discussion of

Smith's varied usage of the term . invisible hand,. see Rothschild [1994].
29. In figure 11-5 we presented the dependence of carrying capacity on vision and

metabolism distributions in the agent population. As average vision increased and mean
metabolism decreased, the carrying capacity increased.

of Markets P by Neoclassical Traders

�

markets.
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The Invisible Hand

There is a sense in which this completely decentralized, distributed

achievement of economic equilibrium is a more powerful result than is

offered by general equilibrium theory, since dynamics of price formation
are fully accounted for, and there is no recourse to a mythical auctioneer

. This result harks back to Adam Smith and the classical economists

whose image of markets involved no such entity.28

Having seen typical price-volume time series for markets of neoclassical

agents engaged in bilateral trade, we now investigate the nature of these



equilibrium.

Statistical Equilibrium
The equilibrium concept used in general equilibrium theory is a deterministic 

one. That is, once the auctioneer announces the market-clearing

price vector, all agents trade at exactly these prices. Each agent ends

up with an allocation that cannot be improved upon. That is, a Pareto-

optimal set of allocations obtains. Because these allocations are optimal,

no further trading occurs and the economy is said to be in equilibrium .

Overall, equilibrium happens in a single trade step.
30

In the model of bilateral exchange described above, each agent trades

not at the general equilibrium price but rather at a locally negotiated one.

Imagine that it is some particular agent
's turn to move, and you must predict 

the exact price at which its next trade will occur. This price depends
not only on that agent

's own internal valuation (MRS) but also on that of

its trading partner. Predicting the actual trade price involves predicting
who this neighbor is likely to be, that agent

's MRS, and so on. With anything 
less than a complete description of the entire state space of the arti-

fidal sodety, this calculation can only be made probabilistically.

Recently, Foley [1994] has advanced a novel theory of statistical eco-

30. For a classic exposition, see Arrow and Hahn
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pletely decentralized trade . It is of a profoundly different character than

�

[1971].
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Figure 1V-6. Carrying Capacity as a Function of Mean Agent Vision,

with and without Trade, under Rule System ({GI}, {M , T})



Horizontal Inequality

Foley [1994] has introduced the term horizontal inequality to describe the

fact that agents having identical abilities (vision in our model), preferences 

(parameterized by metabolism in Sugarscape), and endowments

will generally have different welfare levels in statistical equilibrium , a

phenomenon that is strictly prohibited in Walrasian general equilibrium .

Differences in final consumption and welfare in Walrasian competitive 

equilibrium always correspond to differences in initial endowments

. But trading at different price ratios leads agents with the same

initial endowments to different consumption and utility levels. [Foley

1994: 342]

31. This is to be distinguished from the theory of stochastic general equilibrium under

incomplete information; for a review see Radner [1982].

32. See Varian [1984: 198-203] for the welfare properties of Walrasian equilibria.

33. The First Welfare Theorem is commonly referred to as the "invisible hand theorem"

[Stokey and Lucas 1989: 451- 54]. This suggests that decentralized trade must arrive- as

if "led by an invisible hand" [Smith 1976: 456]- at Walrasian equilibrium. Our market of

decentralized trade cenainly does not arrive there.

�

SUGAR AND SPICE: TRADE COMES TO THE SUGARSCAPE 113

nomic equilibrium that has much in common with economic behavior

observed in our model.31 He has argued that general equilibrium theory 

is I Imethodologically too ambitious
" in that it attempts to compute

the allocation for each agent exactly. Indeed, such computations would

seem intractable in the relatively simple case of our artificial economy,

to say nothing of the real world .

This brings us to the so-called First Welfare Theorem of neoclassical

economics.32 This result is the foundation for economists
' claims that

markets allocate goods to their optimal social uses. The theorem states

that Walrasian equilibria are Pareto-efficient. They are states in which no

reallocation exists such that an agent can be made better off without making at

least one other agent worse off. But in statistical equilibrium

the First Welfare Theorem should be revised to say that a market equilibrium 

approximates but cannot achieve a Pareto-efficient allocation.

How close a given market comes to Pareto-efficiency can be measured

by the price dispersion in transactions. [Foley 1994: 343]

It is exactly this price dispersion that we studied above and will investigate 

further below in the context of non-neoclassical agents. Thus the

philo~ophical underpinning for laissez-faire policies appears to be weak

for markets that display statistical equilibrium .33



Local Efficiency, Global Inefficiency
The statistical character of the price equilibrium produced by bilateral

trade algorithm T is very different from the usual general equilibrium
notion . It is also true that the quantities traded are always different from

those that would obtain were the system in general equilibrium . To see

this we can make a supply-demand plot for our artificial economy. This

is done by querying individual agents as to the quantity of sugar each is

willing to supply or demand at a given price. Summing these quantities

yields the aggregate supply and demand schedules. The general equilibrium 

price and quantity can then be computed by interpolation and

<:ompared (noiselessly) to the actual (average) trade price and (total )

quantity exchanged. Furthermore, these computations can be repeated
each period and animated. This is done in animation 1V-2 for an artificial 

economy like the one described in figures 1V-3, 1V-4, and 1V-5.

Notice that while the actual price moves around the general equilibrium 

price, the actual quantity traded is always less than what is necessary
to "clear the market." Since agents are unable to trade with anyone
other than their neighbors, there is always some "pent-up

" demand that

goes unfulfilled . That is, if the agents were perfectly mixed, they would

engage in additional trades beyond what they achieve through T. Over

time, as the agents move around, they do meet and interact with these

other agents. However, as they move they are accumulating additional

goods that they are willing to trade, thus shifting the equilibrium fur -

34. The Second Welfare Theorem of neoclassical economics, like the first one, needs to

be modified in statistical equilibrium . It states that any Pareto-effident allocation can be

achieved by a Walrasian equilibrium price vector given an appropriate reallocation of

endowments. However, in statistical equilibrium

unless the [initiall endowment can be redistributed directly to the Pareto-efficient allocation, in
which case there is nothing for the market to do. the generation of endogenous horizontal

inequality among agents appears to be an inescapable by-product of the allocation of resources

through decentralized markets. [Foley 1994: 3431

�
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In other words, the welfare properties of neoclassical general equilibrium 
markets are not preserved in statistical equilibrium , due to the

production of horizontal inequality. So once again the character of the

equilibrium in our model turns out to differ markedly from that in the

orthodox theory of general equilibrium .34 In fact, we expect the production 
of horizontal inequality to occur in proportion to the variance

or dispersion in price in statistical equilibrium . Later it will be shown

that such dispersion can be very large indeed.
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Far from Equilibrium Economics

A very general principle is lurking here. At each time step agents engage
in production (resource gathering according to M ) and consumption
activities as well as pure exchange with their neighbors according to T.

Because the exchange rule requires time to reach an equilibrium societal 

allocation, it essentially gives production and consumption time to

alter the equilibrium to which T is converging. That is, as production
and consumption modify endowments they also modify the target the

exchange process is trying to achieve. The result is that the economy is

far from equilibrium in a very definite sense. These circumstances-

exchange taking time to converge while production and consumption

constantly shift the equilibrium - are sufficient conditions for the existence 

of a nonequilibrium economy.37

36. The far-from-equilibrium character of this spatially distributed market is an interesting 
result from the perspective of prices as signals appropriate for decentralizing decision-

making. Although the market has not reached general equilibrium it is essentially
generating the general equilibrium price (though our agents, following T, do not use this

signal). There are at least two implications of this. First, "getting the price right 
W is not suf-

fident to guarantee allocative efficiency. The second conclusion is of a different character.
In certain markets it may be that agents use local infonnation exclusively in their eco-

nomic decisionmaking. In such markets aggregate data such as average prices, a primary
focus of economists' attentions, are simply emergent statistically from micro-heterogeneity
and of no particular interest to the agents.

37. Fisher [1983: 14] makes a similar point: 
"In a real economy. . . trading, as well as

production and consumption, goes on out of equilibrium. It follows that, in the course of

convergence to equilibrium (assuming that occurs), endowments change. In turn this

changes the set of equilibria. Put more sucdnctly, the set of equilibria is path dependent-

it depends not merely on the initial state but on the dynamic adjustment process. . . .
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�

35. In animation IV-2 there is an increase in both the actual trade volume and the general 
equilibrium volume over time (the fonner always jagging the latter). This nonsta-

tionarity is due to the infinite livedness of the agents.

ther. The decentralized economy is always far from general equilibrium
in this sense.35

This result is of prime significance. For whenever the actual trade volumes 

are less than the general equilibrium ones, agent society is not

extracting all the welfare from trade that it might . If the agents could

coordinate their activities beyond their local neighborhoods they could

all be made better off. Here we see that even though T produces exchanges
that are nearly Pareto-optimal locally, the resulting market has far from optimal

welfare properties globally.
36



�

SUGAR AND SPICE: TRADE COMES TO THE SUGARSCAPE 117

Effect of the Distribution of Agent Vision on Price Variance

In figure IV-5 the variance in trade price decays to a relatively small

value. Initially , the agents
' endowments may have little to do with their

preferences (since both endowments and preferences are randomly

assigned). Hence, when they encounter one another they may trade at

prices far from the general equilibrium level. But exchange serves to

bring their internal valuations (MR Ss) closer together. Over time, the dispersion 

in MR Ss decreases as agents increasingly encounter others with

MR Ss similar to their own . However, as described above, the process es of

production and consumption make complete convergence impossible,

and so some price variance persists indefinitely .

One can get significantly larger amounts of price variance by making

the market 
'
lithinner." For example, when agent interactions are restricted

, less trade occurs, price convergence slows, and there results a

broader disribution of MR Ss in the economy. There are a variety of ways

to produce such thin markets on the sugarscape. Here we investigate the

effect of agent vision on the speed of price convergence.

In the run of the model described in figures IV-3, IV-4, and IV-5, agent

vision was uniformly distributed between 1 and 5. U we reduce vision to

1 across the entire agent society, then the agents will move around much

less and there will be more price heterogeneity. This is depicted in figure

IV- 7 where the annual mean price is displayed.

The average price over the roughly 100,000 trades that occur during

this period is 1.0, quite close to the general equilibrium level. But nothing 

like the "law of one price
" obtains. This is displayed more clearly by

a plot of the standard deviation in the natural logarithm of per period

mean prices (see figure IV-B). While the standard deviation trends downward

, there is significantly more variation in the price than encountered

in figure IV-5. Inshon , nothing like general equilibrium obtains here.

Price variance is a feature of real-world markets. The amount of price

dispersion in any panicular market is, of course, an empirical question.

While we do not purpon to be modeling any particular market here, the

degree of price heterogeneity displayed in figure IV-B is of the same magnitude 

as that observed in econometric studies of price dispersion.
38

What matters is the equilibrum that the economy will reach from given initial conditions,

not the equilibrium that it would have been in, given initial endowments, had the prices

happened to be just right.
" See also Negishi [1961] and Hicks [1946: 127- 29].

38. These include Carlson and Pescatrice [1980] and Pratt, Wise, and Zeckhauser

[1979]. Economists seek to explain persistent price dispersion in terms of imperfeCtly



Figure IV -B. Typical Time Series for the Standard Deviation in the

Logarithm of Average 1i"ade Price under Rule System ({GI}, {M , T}),
with Agent Vision set at I
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Figure IV-7. Typical Time Series for Average Trade Price under Rule
System ({GI), {M, T}), with Agent Vision Set at I
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It is also possible to create markets on the sugarscape that have much

less price variance than that shown in figure 1V-5. When average agent

vision is large, price heterogeneity decreases. Figure 1V-9 gives a time

series for the standard deviation in the logarithm of mean prices in a

population in which vision is unifom1ly distributed between 1 and 15.

Here, due to higher mean vision, there is much more intense interaction

- more perfect mixing- of the agent population and therefore equilibrium 

is approached quickly. By contrast to the preceding case (low

agent vis on, high price variance), the anifidal market of figure 1V-9

more closely resembles the information-rich environment of, for example

, finandal markets.

Non-Neoclassical Agents and Further Departures from Equilibrium

up to now our agents, endowed with fixed preferences and infinite lives,

have been basically neoclassical. In agent-based models like Sugarscape

it is not difficult to relax these assumptions. In what follows we make

Standard Deviation

informed consumers who engage in (costly) search for the best prices [Ioannides 1975,

Reinganum 1979] . Our model is not a search model, yet it also yields price dispersion.
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Figure 1V-9. Typical Time Series for the Standard Deviation in the

Logarithm of Average Trade Price under Rule System ({GI), (M, T}),

with Agent Vision Uniformly Distributed between 1 and 15



Finite Lives: Replacement
In Chapter II we introduced finite death ages into the agent population
for purposes of studying the wealth distributions that emerged under
rule M . The replacement rule Rla.b] denotes that the maximum agent
age is uniformly distributed over interval [a,b] .

In the context of trade, the effect of the replacement rule is to add

agents to -the population who initially have random internal valuations,
that is, MR Ss quite distant from the price levels that prevail. A new agent
is born into the world with an initial endowment uncorrelated with its
wants. It seeks, through trade, to improve its welfare by bringing its
endowments into line with its needs. That is, an agent with high sugar
metabolism and low spice metabolism wants to accumulate much

larger stocks of sugar than of spice. When agent lifetimes are relatively
short in comparison with the time required for the distribution of MR Ss
to homogenize, high price variance will result. An example of this is
illustrated in figure IV- IO, a plot of the standard deviation in the logarithm 

of annual average trade prices in the case of maximum age distributed 

unifonnly between 60 and 100, and vision returned to its
earlier distribution (uniform between I and 5). Clearly, this straightforward 

departure from the neoclassical agent produces market performance 
at considerable variance with Walrasian general equilibrium .39

As the average agent lifetime grows there is more time for young
agents to have their internal valuations brought into line with the overall 

market.4O So the price dispersion decreases as mean agent lifetime
increases. This effect is shown in figure IV- II where agent maximum

ages are distributed uniformly between 980 and 1020.41

39. At any instant in this finitely lived agent economy it is certainly the case that equilibria 
exist. Figure IV-I 0 demonstrates that such equilibria will not generally be achieved.

40 One might argue that in the real world the issue is not agent lifetimes per se, but
rather the duration of agents

' 
panicipation in markets. Of course, in Sugarscape all agents

who are alive panicipate in the market through rule T.
41. Note that the variance in agent lifetimes is identical in figures IV-I 0 and IV-II .

�
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our agents more human, first, by giving them finite lives and, second, by
permit ting their preferences to evolve. We shall see that the effect of
these new rules is to add variance to the distribution of prices and to

modify the price itself. In fact, the mean price will follow a kind of I Irandom 
walk .1I
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42. It is not possible to study wealth distributions in the context of infinitely lived

agents since such distributions are nonstationary.
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Average Agent Age
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We have studied this effect for a variety of agent lifetime specifications

and summarize the results in figure IV- I2 .

Equity
In Chapter il , highly skewed distributions of wealth were observed for

agents following movement rule M . How is the distribution of wealth
altered by trade? In particular, is society made more or less equitable by
trade? Now that finite lives and agent replacement have been reintroduced 

this question is conveniently studied.42 One familiar measure of

equity is the Gini coefficient, G, illustrated in animations il -4 and ill -4,
where it was displayed along with Lorenz curves. In figure IV-I3 the

dependence of G on trade is displayed.

Overall, the effect of trade is to further skew the distribution of wealth
in society. So, while trade increases the carrying capacity, allowing more

agents to survive, it also increases the inequality of the wealth distribution.
In this sense, there is a tradeoff between economic equality and eco-

nomic performance.
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Figure 1V- l2. . Dependence of the Long-Run Standard Deviation in
the Logarithm of Average Trade Price on Average Lifetime under Rule

System ({GI}, (M , R[a.b]' T})
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Finite Lives: Sexual Reproduction
When agents reproduce sexually via rule S, described in Chapter ill ,

each new agent
's preferences are the result of U cross-over" of its parents

'

preferences. With S turned on we expect- as in the case of agent

replacement through R[a.b]
- an increase in the price variance due to the

continual introduction of novel agents (with random internal valuations

) into the society. In figure 1V-14 the onset of puberty is a random

variable in the interval [12, 15], the range of ages at which childbearing
ends is [35, 45] for women and [45, 55] for men, and the maximum

agent age is selected from [60,100] .

Again, a persistent high level of price dispersion is observed. Overall,

the effect of finite lives - with replacement or sexual reproduction- is to

push the market away from anything like general equilibrium .

As shown in Chapter ill , evolutionary process es are at work whenever 

the agents engage in sexual reproduction, modifying the distribution 

of vision and metabolism in the agent population . Therefore

economic preferences are systematically varying on evolutionary time

scales when S is operational. This is so since the distributions of metabolisms 

in the agent population are changing, as in figure ill -2, and these

metabolisms enter directly into the agent welfare functions. This is a

kind of uvertical transmission" of preferences. We now consider the

uhorizontal transmission" of preferences.

Gini
0.5
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Figure IV-I3 . Dependence of the Gini Coefficient on Trade,
Parameterized by Mean Vision and Mean Metabolism, under Rule

System ({GI), {M, R[60.1001' T})
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Effect of Culturally Varying Preferences

It is usual in neoclassical economics to assume fixed, exogenously given,

agent preferences. The preferences of our agents, as manifested in the

welfare function , although state-dependent, are fixed in the sense of

being dependent on each agent
's unchanging biological needs (metabolisms

). It seems clear that, in fact, preferences do evolve over the course

of an agent
's life, as a function of contacts with other agents.

43 
Imagine

that the only foods are peanuts and sushi. Though born into a family of

pure peanut eaters in Georgia, one might acquire a taste for sushi on a

trip to Japan.

Here we let economic preferences vary according to the state of an

agent
's cultural tag S.44 

By making agents
' 
preferences depend on cultural

variables, welfare functions evolve endogenously. In particular, call [ the

fraction of an agent
's tags that are Os; then (1 - / ) is the fraction of Is.45

We let these enter the welfare function according to

Figure 1V-14. Typical Time Series for the Standard Deviation in the

Logarithm of Average Irade Price under Rule System ({GI), {M, S, T})

Standard Deviation
1

Time
1000

�

43. There is a large literature on preference formation and change, including Peleg and
Yaari [1973], Stigler and Becker [1977], Cowen [1989, 1993], Kami and Schmeidler

[1989], and Goodin [1990].
44. The cultural interchange machinery was introduced in Chapter ill .
45. Note that the definition of group membership given in Chapter ill can be stated as

follows: iff < 1/2 then the agent belongs to the Red tribe; iff > 1/2, the Blue tribe.
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Figure 1V-15. Typical Time Series for Average 1i"ade Price under Rule

System ({GI}, (M , K , T})

Mean Price

46. For another use of binary strings to model evolving preferences, see Lindgren and
Nordahl [1994: 93- 94].

47. Note that through culturally varying preferences, an agent
's biological (metabolic)

requirements can be eclipsed by cultural forces. For example, in the case of f near 0, an
agent vinually neglects its need for sugar and, unless f increases later, the agent may die
from sugar starvation.

"Wi( .!!!!f m.zWI,W2) = W 11 W 7(1-1>I 2 '
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where 1.l = m 1 f + m2( I - / ) . Thus, when cultural transmission process es
are active, preferences evolve over time, yet at each instant the Cobb-

Douglas algebraic form is preserved.46

Figure IV-I 5 gives a typical annual average price time series when infinitely 
lived agents are governed by (5) and cultural transmission rule K is

operational.

Note that now the mean price follows a kind of random walk. This
occurs because culture is continuously evolving and therefore preferences
are constantly changing.47 There is also significant price dispersion, as
shown in figure IV-I6 .

Note that the variance in price never settles down. Also, at 106 transactions
, the volume of trade in this run is larger (by a factor of roughly 5)

1.5

1.2



than in figure 1V-4. This is because as an agent
's preferences change it

finds itself holding goods that it no longer values highly . Or, as

Shakespeare
's Benedick asks, 

" . . . but doth not the appetite alter? A man

loves the meat in his youth that he cannot endure in his age."48

Let us now turn sexual reproduction (5) on as well , so that preferences 

change both "
vertically

" and "horizontally ." A typical time series

for the price standard deviation is shown in figure 1V-17.

The combined effect of finite lives and evolving preferences is to produce 
so much variation in price that equilibrium seems lost forever.

In summary, our quite realistic departures from the neoclassical

model of individual behavior produce dramatic departures from the textbook 

picture of overall market performance. Now we turn to another

topic, restoring the neoclassical assumptions.

Externalities and Price Disequilibrium: The Effect of Pollution

In Chapter n we introduced pollution onto the sugarscape. There we were

concerned with the effect of pollution on agent movement. When we

turned pollution on and allowed it to accumulate (no diffusion), agents

1000 Time

�

48. From Much Ado About Nothing, Act II, Scene m.
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Figure 1V-16. Typical Time Series for the Standard Deviation in the

Logarithm of Av.erage Trade Price under Rule System ({GI), {M , K , T})
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migrated from the polluted area. When we turned diffusion on, the pollution 

dissipated and agents moved back into the abandoned zones.

Having developed a model of bilateral trade in this chapter, we are

now in a position to explore the effect of pollution on prices. To economists

, environmental pollution is the classic negative externality .

Externalities are important since their existence is an indication that an

economy is not achieving efficient resource allocation.

To explore the effect of pollution on prices we let one resource, sugar,

be a N 
dirty

" 
good. That is, when agents harvest sugar from the landscape

they leave behind production pollution . When they metabolize sugar

they produce consumption pollution . Spice harvesting and consumption

, by contrast, do not cause such pollution . Our experiment, then, is

this. First, we will allow agents to trade. Then, after 100 periods, the

agents begin generating sugar pollution and we track the effect on

prices. At t = 150, pollution is turned off and diffusion process es are activated

. Results of the experiment are logged in animation N -3.

When the agents flee the polluted sugar mountains and move to the

spice rich (sugar poor) regions, most of the sugar available to meet metabolic 

needs is what the fleeing agents have carried with them. Agents
who need sugar must trade for it , and the relative sugar scarcity that
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Figure IV - I7 . Typical Time Series for the Standard Deviation

in the Logarithm of Average li "ade Price under Rule System

({GI), {M , S, K , T})

Standard Deviation



Accompanying Sugar Extraction and Consumption; Rule System ({GI,

DI }, (M , T, PI)

Average 

Trade Price

10 . 0

5 . 0

2 . 0

1 . 0

0 . 5

0 . 2

0 . 1

20 40 60 80 100 120 140

Time

Average 

Trade Price

10 . 0

5 . 0

2 . 0

1 . 0

0 . 5

0 . 2

0 . 1

0 60 80 100 120 140 160 180 200 220

Time

Price and Price Range Thne Series for PollutionAnimation 1V-3.

Average Trade Price
10.0

5.0

2.0

1.0

OS

0.2

0.1

Average Trade Price
10.0

5.0

2,0

1.0

0.5

0.2

0.1

Time



49. Recall that prices are ratios of spice-to-sugar: A sugar price of 5 means that a buyer
of sugar would sacrifice 5 units of spice to acquire 1 unit of sugar.

�
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results causes the sugar price to rise.49 The effect is dramatic, effectively
an exponential price rise.

Then, when pollution generation is turned off- imagine this being the
result of some technological windfall - and pollution levels are transported 

across the landscape by diffusion, the agents return to the sugar
rich zones and the sugar price falls to its previous value of around 1.0.
Such price adjustment dynamics are ignored in static microeconomics,
where the implicit presumption is that, as a policy matter, it is safe to
assume instant adjustment to a new equilibrium . For t > 150, we do
indeed see adjustment back toward the original equilibrium . But from
the perspective of agent society the process is far from instantaneous. In
this case the artificial economy requires roughly twice as long to recover 

its statistical price equilibrium as it did to deviate from it . When
transients such as this are long-lived, it makes little sense to focus all
attention on equilibria . Artificial societies provide a means of studying
price dynamics.

.

On the Evolution of Foresight

Agaipst our simple agents it may be said that they are myopic temporally
. A simple way to remedy this is to have them make decisions not

on the basis of their current holdings but instead as if they were looking
ahead cp periods. Formally, let the agents now move to maximize

W(Wl,W2;cP) = (wl- cPml)
m/lmT(w2- cPm2)mvmT, (6)

where the parenthesized terms on the right hand side are set equal to
zero if they evaluate to a negative number.

To study how this simple kind of foresight can modify agent behavior,
we initially let cp be uniformly distributed in the agent population in the

range [0, 10], and then turn sex (that is, S) 
"on." Once more, we can

"watch" evolution unfold (see figure IV-18) by tracking the average
foresight in the population .

Clearly, some foresight is better than none in this society since the long-

run average foresight becomes approximately stable at a nonzero level.
However, large amounts of foresight, which lead agents to take actions as
if they had no accumulation, are less "fit " than modest amounts.
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Figure IV - IS . Evolution of Mean Foresight under Rules ({GI ), {M , 5 })

Average Foresight

argent

Since agents in our model interact directly with each other rather than

through the price system, there is a dynamic interaction structure that

can be studied independent of explicit economic variables. That is, there

exist well -defined networks that depict agent interactions and the evolution 

of such interactions. 50 Here we first describe the networks that

have been implicit in the trade process es discussed above, networks 
.
of

trade partners. Then we introduce a new relationship between agents, a

credit rule, and study the network of lenders and borrowers that

emerges.

Commodity Flows through Networks of Trade Partners

In this chapter we have specified rules for local trade between heterogeneous 

agents and have studied the markets that emerged. All trade was

between neighboring agents. There thus exists a network of trade panners
.51 To depict such a network , let each agent be a node of a graph and

50. Other models of trade networks include Kauffman [1988] and Tesfatsion [ 1995] .

51. Since all trade partners are neighbors, but not conversely, the trade panner network

is a subgraph of the neighborhood network , defined in Chapter ll .

65.755.55.2554.754.54.250 200 400 600 800 1000 Time
: Economic Networks

�



Credit Networks and the Emergence of Hierarchy

So far the agent sodeties studied in this book have been 
"
flat

"- there is

no sense in which some agents are subordinate to others . This stems

from the fact that agent interactions are usually short lived , lasting one

(or at most a few ) periods , or are symmetrical (such as when agents are

neighbors of one another , or are mutual friends ).

We can produce hierarchical relationships among agents by permit ting
them .to borrow from and lend to one another for purposes of having
children . The following local rule of credit produces such relationships :54

Agent credit rule LA,:

. An agent is a potential lender if it is too old to have children , in

which case the maximum amount it may lend is one-half of its current 

wealth;
. An agent is a potential lender if it is of childbearing age and has

wealth in excess of the amount necessary to have children , in

which case the maximum amount it may lend is the excess wealth;
. An agent is a potential borrower if it is of childbearing age and

has insuffident wealth to have a child and has income

(resources gathered , minus metabolism , minus other loan

obligations ) in the present period making it credit -worthy for

a loan written at ten D S specified by the lender ;

�

52. As in Chapter ill , lines across the entire lattice connect trade partners who are
neighbors on the torus.

53. For why this network does not have a pure von Neumann structure, see footnote
29 in Chapter II.

54. Insofar as a primary consequence of this rule is that older agents lend to younger
ones, a kind of finely grained overlapping generations model results.
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draw edges between agents who are trade partners . Such trade networks

are endogenous in that they depend in a complicated way on agent
behavior (that is, the movement rule , trade rule , and so on ). They

change over time , of course , as agents move around the landscape .

Animation IV-4 gives such an evolution .

It is useful to think of the edges in such networks as channels over

which commodities flow .52 Notice that although any particular agent
trades with at most 4 neighbors , agents who are quite distant spatially may
be pan of the same graph , that is, connected economically . In essence,
such graphs portray large-scale flows of goods across the landscape.53



Animation IV -4.

{M, T})
Emergent Trade Network under Rule System ({G]),



Social Computation, EmergentComputation

The theory of general equilibrium is essentially a body of results on the

existence of equilibrium . In the neoclassical story, the Walrasian auctioneer 

is a mechanism for achieving such an equilibrium . Once the market-

clearing price is detennined, the population of price-taking agents

�

55. The Sugarscape software system implements the n commodity generalization of credit 

rule L. For the sake of simplidty, the single commodity (sugar-only) form is used here.
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. If a potential borrower and a potential lender are neighbors
then a loan is originated with a duration of d years at the rate

of r percent, and the face value of the loan amount is transferred 

from the lender to the borrower;
. At the time of the loan due date, if the borrower has sufficient

wealth to repay the loan then a transfer from the borrower to

the lender is made; else the borrower is required to pay back

half of its wealth and a new loan is originated for the remaining 

sum;
. If the borrower on an active loan dies before the due date

then the lender simply takes a loss;
. If the lender on an active loan dies before the due date then

the borrower is not required to pay back the loan, unless

inheritance rule I is active, in which case the lender's children

now become the borrower 's creditors.

This rule may not seem at first glance to be particularly parsimonious.

However, it is the simplest one we could think of that bore some resemblance 

to real-world credit arrangements.

We. return to the one commodity landscape to illustrate the operation
of this rule. When agents move, engage in sexual activity, and borrow

from and lend to one another, there result credit relationships like those

shown in animation 1V-5.55 This animation begins by displaying agents

spatially, coloring lenders green, borrowers red, and yellow those agents
who are both borrowers and lenders. Subsequently, the hierarchical

evolution is displayed. Agents at the top of the hierarchical plot are pure
lenders, those at the bottom of any branch are pure borrowers, and

agents in between are simultaneously borrowers and lenders. For this

run as many as five levels of lenders-borrowers emerge.



Emergent Credit Network under Rule System ({GI},Animation 1V-5.
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56. Technically, these questions are very complicated. In the context of parallel, asynchronous 

computation, the relevant literature concerns the snapshot algorithm; see

Bensekas and Tsitsiklis [1989: 579- 87] .

57. For more on emergent computation, see Forrest [ 1991] .

�
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produces a socially optimal allocation of goods through exchange. The

auctioneer is essentially an algorithm for the computation of prices. In this

picture of the economic world no single agent has enough information

(about endowments, preferences) to compute an efficient allocation on its

own. Yet this allocation results through the cumulative actions of individuals

. However, a particularly curious characteristic of this picture of decentralized 

decisionmaking via prices is that the auctioneer algorithm requires
centralized information . That is, all agents must report their demands to the

auctioneer who ultimately furnish es an authoritative price to the population 
that all agents must use in their trade decisions.

In reality, of course, there is no auctioneer, no central price computation

authority. Rather, prices emerge from the interactions of agents. These

interactions occur in parallel and asynchronously. It is as if agents are

processing nodes in some large-scale parallel, asynchronous computer.

Trade is the algorithm the nodes execute; nodes communicate prices to

one another and change their internal states through the exchange of

goods. The computation topology (architecture) is endogenous and

ever-changing. Under what circumstances do such computations terminate 

in a market-clearing price? And how would any particular agent
know that they had terminated- is it even possible to discern whether

an equilibrium price has been achieved?56 Does the fact that some nodes

die while new nodes are regularly added to the social computer mean

that notions of computation temlination must be stochastic in nature?

Insofar as real economic agents engage in trade to improve their welfare

, one might view the parallel,- asynchronous exchange activities of

agents not as the social computation of prices but as a distributed algorithm 
for the production of agent welfare. Artificial economies are laboratories 

where we can study the relative performance of distinct trade

rules (algorithms) and alternative computational architectures (agent
networks) in producing agent welfare.

Social computation concerns how societies of interacting agents solve

problems that agents alone cannot solve, or even pose. Emergent computation 

concerns how networks of interacting computational nodes

solve problems that nodes alone cannot solve.57 Notice that these two

fields have much in common.



Conclusions

Policy Implications

Foley [1994] has thoroughly criticized the way in which conclusions
about economic policy are drawn from the model of Walrasian competitive 

equilibrium . In particular, the orthodox criticism of price regulation
is that it is i" elevant if prices already fall within the limits set by the regulations 

or distorting if it actually constrains price movements. But in
decentralized markets there is no single price.

If a significant amount of trading takes place at different price ratios,
price floors and ceilings can serve to protect agents against relatively
disadvantageous trades, and thus to mitigate the endogenous horizontal 

inequality produced by the market. [Foley 1994: 342]

Therefore, a clear role for economic regulation may exist when prices
are heterogeneous.

Certain economists ascribe nearly magical powers to markets. Markets
are idealized to operate frictionlessly, without central authority , cost-

lessly allocating resources to their most efficient use. In this world of

complete decentralization and Pareto efficiency, the only possible effect
of government intervention is to "gum up

" the perfect machinery. While
this extreme view is perhaps little more than a caricature- and few
would admit to holding it in toto - it is also, unfortunately , a position
frequently promulgated in policy circles, especially when there is no
econometric or other evidence upon which to base decisionmaking.58

A different way to frame the issues raised in this chapter is as follows:

58. On the limited extent to which economic theory provides solid foundations for policy
, see Hahn [1981] and Kirman [1989].
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Summary and

In many ways, the central question of economic theory is this: To what
extent can economic markets efficiently allocate goods and services

among agents? For example, does the ostensibly good performance of
markets like stock exchanges tell us anything about the functioning of
decentralized markets such as those for environmental goods and services

? In our model we have just such a decentralized market- decentralized 

spatially- and we have found mixed results, to say. the least,
concerning the achievability of equilibrium prices and globally optimal
allocations, under a wide variety of conditions.

�



59. Indeed, there is a growing theoretical literature that admits these possibilities; see, for

example, Bala and Majumdar [1992] . However, these results do not seem to have made

their way into policy discussions as of this writing .

60. As Farmer has observed, NTo someone schooled in nonlinear dynamics, economic

time series look very far from equilibrium , and the emphasis of economi.c theories on

equilibria seems rather bizarre. In fact, the use of the word equilibrium in economics

appears to be much closer to the notion of attraaor as it is used in dynamics rather than

any notion of equilibrium used in physics 
N 

[Anderson, Arrow, and Pines 1988: 101] .

�
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Do plausible departures from the axioms of general equilibrium theory

produce markets that behave almost as well as ideal markets? While few

would admit that extant markets function ideally, there is little cogent

theory of performance degradation in real markets resulting from

incomplete information , imperfect foresight, finite lives, evolving preferences
, or external economies, for example.

The emphasis in the economics literature has been on the existence of

static equilibrium , without any explicit microdynamics. Why cannot

prices oscillate periodically on seasonal or diurnal time scales, or quasiperiodically 
when subject to shocks, or even chaotically?59 Is it not reasonable 

to expect generational or other long-term structural shifts in the

economy to produce prices that follow a trend as opposed to staying
constant? Might not far from equilibrium behavior be a more reasonable

description of a real economy?60 From the computational evidence

above, we think that there is good reason to be skeptical of the predominant 
focus on fixed-point equilibria . Economies of autonomous

adaptive agents- and of humans- may be far from equilibrium systems.

And, in turn , far from equilibrium economics might well turn out to be

far richer than equilibrium economics.



>
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Immunology 
concerns the dynamics of infection within an individual .

Epidemiology concerns the spread of infections between individuals,
and hence through populations. While the two are obviously related,
there is little in the way of unified theory. Immunology is one field, epi-

demiology another. Moreover, as in demography- discussed in Chapter
ill - the models tha~ do exist in these fields are essentially Ntop down,

"

involving highly aggregate, low dimensional systems of differential

equations. In this chapter we offer a unified bottom-up immunology-

epidemiology model and discuss how the intraand interagent infection

dynamics may interact with other sodal process es, such as migration
and trade.

Models of Disease Transmission and Immune Response

To model the spread of infectious diseases through a population , mainstream 
mathematical epidemiology divides the population into subgroups

, compartments such as Nsusceptibles,
" 

Ninfectives,
" and

"removeds" (for example, quarantined), and then posits various differential 

equations tracking the flow of individuals from one pool to the
next . I The Kermack -McKendrick [Murray 1989: 612] equations
exemplify this ordinary differential equations (ODE) approach. In that
well -known model. susceptibles contract the disease (that is, become
infective) through contacts with infectives; infectives are removed from
circulation at some rate proportional to their numbers.2 In this case, the
flow is from susceptible to infective to removed; for that reason, it is
termed an SIR model. Such models have the important property of

being mathematically tractable- at least there is a large arsenal of

1. Sometimes fmite difference equations are used instead of differential equations. The
thrust of our critique is not affected by this distinction.

2. Technically, one distinguish es between the pathogen- a microparasite, for
instance- and the disease, as a set of symptoms. For modeling purposes, we ignore the
distinction.



analytical and numerical tools that can be brought to bear on them. The

approach, moreover, has fundamentally illuminated , for example, the

threshold nature of epidemics and has elegantly explained such coun-

lerirituitive phenomena as herd immunity , 3 both of which have

important implications for public health polices . The younger field of

mathematical immunology is yielding the same kinds of important qualitative 

insights.4

Heterogeneous People, Homogeneous Models

These strengths, however, come at an expense in realism. In Kermack-

McKendrick type models, for example, Nif you
've seen one susceptible,

you
've seen 'em all." That is, these models are highly aggregate. There

is simply a state variableS (t), representing the number (or fraction) of

susceptibles in sodety at time t. A susceptible is a susceptible is a susceptible

; the same goes for infectives, I (t), and so on. Agents, in short,

are homogeneous.5 In reality, of course, agents are heterogeneous predsely

in that they have different immune systems.
6

In our model, every agent is born with a distinct immune system,

capable of adaptation to ward off disease. Immune systems are genetically 

transmitted from parents at birth and are distinguished from either

parent
's immune phenotype. This genotype-phenotype distinction is discussed 

below, where the predse immune system that is inherited from

the parents is described in detail. Agent immune systems Ntry
" 

(~ a

predse sense to be explained) to Ncode for" 
parasites as these are passed

from agent to agent} This brings us to our treatment of space.

3. In a well-mixed population- a
disease cannot survive in the herd.
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herd- if some initial fraction is immunized then the

In this sense, the herd enjoys immunity though not

all members of the herd do; see Edelstein-Keshet [1988: 254].

4. Perelson [1989] offers a ludd introduction to theoretical immunology.

5. More elaborate models disaggregate further, defining sub-types within the susceptible 

(or infective) pool, 5;(t), for i = I ,..., n. But, for each i, the group is homogeneous. Of

course, when n equals the size of the total population, one has, in effect, an agent-based

model.
6. Attempts to formally model heterogeneous populations- for instance, Nold [1980],

May and Anderson [1984], and Boyian [1991]- show the importance of heterogeneity,

but very quickly lead to intractable mathematics and recourse to traditional computer simulation

. Even the addition of seemingly innocuous features like nonconstant population
to standard models can yield formidably complicated nonlinear dynamical systems (for

example, Busenberg and van den Driessche [1990], Derrick and van den Driessche [1993],

and Gao and Hethcote [1992]).
7. We have consistently used the term "agent W to denote individual humans, and we

continue this usage in the present chapter. However, to avoid confusion, it is worth



Separate Space

In ODE models, there is no space whatever; society is modeled as a well-

stirred memical reactor. Partial differential equation models, for example,
reaction-diffusion systems, couple these reaction kinetics to some sort of spatial 

process, sum as diffusion. In sum models the agent society is tteated as
a continuous function of space. Diseases propagate- as, for instance, ttav-

eling waves- across agent society, idealized as a continuous medium.8

In our artificial society- and in the real world- agents are completely
distinct from the space they inhabit . When diseases occur in our model
they are, to be sure, passed from agent to agent (depending on individual 

immunity ), but the environment , the sugarscape- and the agents
'

rules for , interaction with it- shapes the spatial distribution of agents,
and hence shapes the epidemic dynamics. In Sugarscape, agents might
come into contact while searching for sugar, and so the (ever-manging )
topography of the sugarscape affects the epidemic dynamics. In turn ,
events that produce migrations- like sudden environmental manges -
have the effect of forcing separate disease pools together, thereby confronting 

immune systems with new infections, allowing us to "
grow

"

s~enarios of the sort recounted colorfully by William McNeill in his book

Plagues and Peoples [1976] . We will return to these "proto -epidemics
"

once the model has been described.

System
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Immune Response

Before presenting our model in detail , it should be emphasized that the
human immune system is a fantastically complex apparatus whose primary 

functions include :

. recognizing parasites, bacteria , and viruses ;

. mounting defenses that are highly specific to the invaders in

question ;
. remembering the foreign invaders

' 
structures , and maintaining a

capability to defend against subsequent attacks .9

noting that traditional epidemiology uses the term NhostN where we use Nagent," and
Ninfectious agent

" where we use Ndisease."

8. See Murray [1989: 651- 95] for deterministic models; Oelschlager [1992] develops a
stochastic model.

9. Typical curves for serum antibodies over time show the secondary response as both
faster and stronger (that is, generating more defender cells, namely lymphocytes) than the
primary reaction.
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10. By a detailed model we mean one that explidtly represents such immune system
functions as lymphocyte proliferation and antibody development. For detailed immune
system models, see Perelson [1988].

The actual mechanisms whereby the human immune system accom-

plishes these diverse tasks are far from completely understood.
In modeling the immune system, differential equations have been the

primary tool . Here we develop a bottom-up model, of which many are

possible. One agent-based approach would be to let microparasites (the
diseases) 

"
graze

" on human society, just as agents graze the sugarscape-
the parasites would then constitute a second population of agents.
Meanwhile , inside each agent host, there would be a detailed immune

system model.lo However, this approach would be computationally
daunting. We develop a simpler- but, we believe, novel and illuminating

- bottom-up model.

As always in this work , our goal is to devise simple local rules under
which the phenomena of interest emerge. Some of what emerges
below- immune learning and memory- is internal to the agents. Other

emergent phenomena- epidemics that spread across the sugarscape-

are external. We will work with strings of Os and I s, using a formalism
akin to that employed earlier to study cultural process es. First, we
describe how an inherited immune system learns and remembers.
Later, we explain exactly what immune system each child inherits from
its parents.

Binary Strings

To begin, every agent is born with an l I immune system
" 

consisting of a

string of Os and Is, a binary string. A "disease" is also a string of Os and
1 s. Diseases may be of different lengths but are always shoner than
immune systems.

A graphical, or I Ishape space,
" 

interpretation of these strings is natural
. Immune systems and diseases can be thought of as linear combinations 

of step functions of unit height. Immune system 00 III 0 1 0 11 is

depicted in figure V- I . In our model, immune response is simply the

process whereby the immune system attempts to II deform " itself locally
to match each disease it encounters.

So, imagine a diseaseD = 10011. What happens when an individual
immune system is confronted with diseaseD? Since the immune sys-



Figure V-I . Shape-Space Interpretation of Binary String 0011101011

Symptoms

This metabolic "fee" is plausible from the point of view of both parasite
and host. Viruses, for example, enter hosts precisely because "they lack

the necessary machinery to manufacture proteins and metabolize sugars
."Il So, in letting our digital diseases "steal" metabolic capacity from

their hosts we are treating them literally as parasites. The imposition of

some metabolic fee also makes qualitative sense from the host's perspective
. Fevers are literally increases in caloric expenditure- our bodies 

heat up when we are sick.
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11. That is, the leftmost substring is selected.
12. Anderson and May [1991: 27].

tern is simply a longer sequence of Os and 1 s, either diseaseD is a substring 

of the immune system or it is not . If it is, then the agent is

immune to the disease. If no substring of the immune system matches

the disea~e, then the agent search es its immune system for the substring
dosest to D- the substring disagreeing with D in the fewest bit positions.

Recall from the discussion of cultural tags in Chapter ill that the number 

of bitwise disagreements between two strings is the Hamming distance 

between them. So, the immune system- call it I- search es itself

for the substring dosest to D in Hamming distance. If there is more than

one such substring, the first one encountered in moving (along I) from

left to right is chosen. I I Then, each time period, a bit on that unearest"

substring of I is flipped to agree with D, until Dismatched (at which

point the agent is immune ). Now, suppose this process of ulearning,
" or

Ucoding for" D, takes 5 periods. During that time, the agent is infected

with D, it can pass D to neighbors, and, imponantly , its metabolism is

increased by some amount .



There may be further manifestations of a disease. For example, we could

easily reduce the agent
's vision while it is infected. Or, we could interrupt

its normal sexual activity. Different diseases can have different effects. The
essential point, however, is that there normally are effects. This raises
another critidsm of standard Ntop-down" 

epidemic models: There is no

recognizable difference in the behavior of infected agents. From the equations 
themselves, that is, there would be no reason to suspect that having

the disease was in any way undesirable or incapadtating; uniform mixing
continues; transmission kinetics are unaffected. In our model, the metabolic 

fee immediately alters the agent
's behavior. Recall that movement

and trading behavior depend on the agent
's utility function, which depends

explidtly on metabolic rates. Hence, because its metabolic rate is affected,
a sick agent Will behave differently than a healthy agent. Obviously, if, in
addition to metabolism, vision is affected, behavior will be altered further.
For simplidty, we include only a metabolic effect here.

In order to discuss immunological memory, multiple diseases, and certain
other topics, a numerical example of immune learning will repay study.
Let us walk through the single disease case.

The Immunological Response Rule

Consider a length ten immune system I = 10 III 0 1 00 1 and, as before,
let D = 10011. Note that D does not match any substring of I . So an

agent with immune system I would contractD on contact with an agent
suffering from it . This now sick agent

's metabolism would be hiked by,

say, one, and it would begin searching I for the closest match.

Comparing D to the five digits of I beginning at position 1, we see disagreement 
at a single position (Hamming distance 1). Comparing D to

the five digits of I beginning with position 2, we find a Hamming distance 
of 4, and so on, as shown in table V- I .

From this table we see that the first 5 bits of I (start position 1) is the

substring that best matches D. Since the immune system is only off by
I bit (at I 's position 3), learningD takes only 1 period. For that cycle,
the agent

's metabolism is hiked by one and the agent can pass the disease 
to neighbors. After having 

I Icoded for" diseaseD, the immune system 
is transformed into 1001101001.
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Immunological Memory as Lock-In

If nothing happens to alter the first five bits of this trained immune system

, then the agent will be pennanently immune to diseaseD. In short,

the trained immune system, having 
"coded for" D, will remember it .13 The

important phenomenon of immunological memory arises very naturally

from our simple model, in much the same way that "lock-in" arises in

other fields. 14

Having worked a numerical example, we now state the general
immune response rule . When a disease confronts an immune system

the rule applied each time period is as follows:

A~ent immune response rule:
. If the disease is a substting of the immune system then end

(the agent is immune), else (the agent is infected) go to the

following step;
. The substring in the agent immune system having the smallest

Hamming distance from the disease is selected and the first bit at

which it is different from the disease string is changed to match

the disease.

�

13. For attempts to capture immunological memory with differential equations, see

Anderson and May [1991: 32- 35] .

14. For discussions of -lock-in,
" see Anhur [1988, 1990] .

�
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Table V-I . Initial Mismatch between the Immune System
1011101001 and Disease 10011



Disease
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Transmission

Multipfe Diseases

At any time there may be many diseases in circulation, a situation easi-

ly handled in our model. Suppose an agent with three diseases has
moved next to you. One of its diseases is selected at random for transmission 

to you. The immune respon.se rule described above is applied:
If your immune system can find a matching substring then you do not
contract the disease. Otherwise, your immune system finds the substring
dosest to the disease in Hamming space and begins flipping, during
which time you suffer a metabolic fee characteristic of that disease. Each
additional disease contracted imposes its characteristic metabolic penalty

. Now, it may be that in "learning
" a certain disease, the immune system 

"unlearns" diseases to which it has earlier become immune . So,

agents may catch the same disease many times. Immunological memory

, in other words, can be corrupted in a world of multiple diseases. This
leads to the possibility of distinct diseases enjoying 

"mutualistic " relations
. For example, no immune system of length three could simultaneously 

code for the two diseases: 11 and 00. The instant the immune

system matches one of them it is vulnerable to the other.

Having discussed immune response to disease, we now turn to interagent 
disease transmission. In reality, humans may contract diseases

through contact with other people or with disease vectors (such as
insects or animals). Given that there is only one class of agents on the

sugarscape, we have no ability to model the latter mode of contact.
Therefore, diseases are transmitted between neighboring agents. The
disease transmission rule, observed by all agents who are infected with
at least one disease, is as follows:

Agent disease transmission rule : For each neighbor, a disease
that currently afflicts the agent is selected at random and given
to the neighbor.

We model disease process es with the immune response and disease
transmission rules given above, and we will always use them together.
Hence, for notational compactness, denote their combined application
byE .



Genotypes and Phenotypes

We have discussed how, in Sugarscape, an agent
's immune system,

inherited at birth , learns to combat diseases. But, what immune system
is actually inherited ? In the course of their lives, an agent

's parents may
have acquired immumty to a variety of infectious diseases; that is, their

immune systems have "trained on" and coded for these diseases.

However, the child does not inherit the trained immune system- the

mature phenotype- of either parent. It inherits an immune system genotype 
that is a "crossover" of the untrained immune genotypes of its parents
, plus possibly some mutation .

For example, imagine that two agents, Adam and Eve, are born with

the first , two immune genomes- two strings of fifty random Os and 1 s.

They immediately begin training on whatever diseases are floating
around the Garden of Eden. While the immunocompetences (pheno-

types) of both Adam and Eve are thus changing through traimng, their

immune genomes are not . It is as though one copy of the agent
's imtial

immune genome- a template, if you will - is immediately set aside, put
on file, and held for later genetic transmission, while the second copy

\)egins training at once and is the operative infection -fighting system of

the agent. This is how it works in our simple model. Specifically, given
the untrained immune systems of its parents, the child's untrained

immune system is determined as follows.

At bit positions where mom's and dad's genomes agree, the child inherits 

their common value. For each bit position where mom and dad differ

, the child gets either its father's or its mother 's value with equal

probability. This object, the genotype, is then set aside for later genetic
transmission, while a copy of it , the phenotype, begins training upon

exposure to disease.I5

One quite realistic result of this scheme is that, while an agent
's parents

may have acquired an immunity to a particular diseaseD- that is, they
have matched that pattern at the phenotypic level- their untrained

immune genomes do not containD as a substring. Hence, each genera-

15. The Sugarscape software system permits mutations to diseases and genotypes at
user-specified rates. Hence, perpetual co evolution of diseases and immune systems can
occur. In the runs of the model below these mutation rates are set to zero to keep things
as simple as possible.
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tion must "learn" D all over again! Indeed, this is why chicken pox persists 
as a childhood disease. Lamarckians- who believed in the genetic

transmission of acquired attributes- would have no explanation for this

phenomenon. We now see the persistence of certain childhood diseases
as manifesting the gap between phenotype (the trained system) and

genotype (the untrained, transmitted template).

Having reviewed the model, let us now run some cases.16 Nature-

that is to say, the computer- maintains a master list of all diseases. Each
disease on the list is a random binary string, its length a random number 

between one and ten. We will consider two cases, first when the
master list holds 10 diseases, and then 25.

Digital Diseases on the Sugarscape

With a master disease list of length 10, there are 10 possible diseases an

agent might contract. Every agent is given copies of four randomly selected
diseases from the list. Immune systems are binary snings of length 50.17

Initially the Os and I s are assigned randomly. The rules for disease transmission 
between agents- the epidemic model- and for immune response

within
' 
the individual- the immunological model- are both in operation.

Agents are moving around the sugarscape as in Chapter II, following rule M .

Starting the agents in random positions, and coloring the "sick" (that is,
those having at least one disease) red and the "well" blue, the epidemic
unfolds in animation V-I .

One can track any particular disease, but the main result of this run is that

sodety is able to rid itself of all diseases. The next case is somewhat more

challenging to the agents
' immune systems.

Now we enlarge the disease master list to 25 diseases, and we initially give
every agent 10 distinct, randomly drawn diseases from the list. Again coloring 

for healthy and sick, the dynamics are represented in animation V-2.

16. Throughout, agents have access to neither vaccine nor medicine. While there are
no medical institutions in our bottom-up model, it is worth noting how one might use
models like Sugarscape to study alternative public health policies. A medicine might be
interpreted as a substance that boosts the immune system response rate each cycle.
Unmedicated agents are allowed to flip one immune bit per cycle; medicated agents might
be permit ted 2 flips, for instance. Alternatively, medications that treat only symptoms
would reduce only the metabolic "fees" imposed by diseases on agents. To model vaccination 

against a particular disease, one might simply append the entire disease string to a
vaccinated agent

's immune system, producing instant immunity to the disease.
17. Thus there are 250 possible distinct immune systems.
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In this case, society is unable to attain universal
of infection is sustained.

health. An endemic level

It is notewonhy that some of the immune systems are doing something
quite marvelous. There are cenainly agents whose immune system is
shoner than the sum of the lengths of the diseases with which they are
confronted. Immune systems are of length 50 and the disease pool has

average length 5.5 (since diseases are of random length between 1 and
10). Hence, it is likely that for some agents, their 10 diseases, laid end
to end, are longer than their immune systems. Immune systems that
dear themselves of these diseases thus cannot be "solving

" the problem
by brute force, that is, laying the diseases end to end. Rather, successful
immune response involves overlaying common substrings.

We kept track of neighborhood agent networks in Chapter il , of genealog-

ical and friendship networks in Chapter ill , and of trading relationships
and credit in Chapter IV. If we now draw lines between sick agents and
the agents from whom they contracted their sickness, a kind of disease
transmission network arises. IS A disease connection network in which

sodety fails to rid itself of all diseases is shown in animation V-3.
Such networks are the "space

" in which diseases travel. The structure
of such networks defines the character of transmission dynamics. For

example, networks having small diameter may be associated with a few
infected agents transmitting their disease to all the other agents.

I9

Real epidemics occur in a sodal context. Sodal behaviors such as
trade, migration , and conquest function to introduce new diseases into
"
virgin

" 
populations, thereby confronting agent immune systems with

novel challenges. An interesting possibility, therefore, is to connect the epi-

demic's spatial and temporal dynamics to other soda I process es, such as military
expansion, migration , or trade.

Many such connections are set forth in WIlliam McNeill 's fascinating
book Plagues and Peoples [1976] . For example, McNeill recounts how, in

China, bubonic plague was spread by military action:
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18. See Wallace [ 1991] for a discussion of AIDS transmission networks. Rapoport and
Yuan [1989] discuss epidemics from a social networks perspective.

19. The diameter of a graph is the minimum number of edges needed to connect any
two nodes of the graph.
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Early in the nineteenth century, the upper reaches of the Salween
River constituted the boundary between infected and uninfected
areas. Then in 1855 a military revolt broke out in Yunan. Chinese

troops were sent across the Salween to suppress the rebels, and, being
unfamiliar with the risks of bubonic infection, contracted the disease
and carried it back with them into the rest of China. Thereafter, outbreaks 

of plague continued to occur in various pans of the Chinese
interior without attracting much attention from the outside world,
until in 1894 the disease reached Canton and Hong Kong and sent a
chill of fright through the European settlements in those pons.
[McNeill 1976: 152]

While military intervention brought the plague to these ports, trade and

technology (the steamship) account for its transmission from there:

. . . the steamship network that arose in the 1870s was the vehicle that

dispersed the infection around the globe, and did so, once the epidemic 
broke out in Canton and Hong Kong, with a speed that was

limited only by the speed with which a ship could carry its colony of
infected rats and fleas to a new pon. Speed was obviously decisive in

allowing a chain of infection to remain unbroken from port to pon.
[McNeill 1976: 156]

In the language of Chapter fi
's proto-history, Blue agents penetrate Red

sodety, catch new infections, return to the Blue zone, and then Blue sod-

ety experiences the epidemic. Or, in their search for "sugar,
" a small band

of infected agents may enter a healthy sodety touching off the epidemic.
Indeed, as McNeill recounts, even a single foreign agent can suffice.

In 1903 a South American tribe, the Cayapo, accepted amissionary-

a single priest- who bent every effort to safeguard his flock from the
evils and dangers of civilization. When he arrived the tribe was
between six thousand and eight thousand strong, yet only five hundred 

survived in 1918. By 1927 only twenty-seven percent were alive
and in 1950 two or three individuals tracing descent to the Cayapo
still existed, but the tribe had totally disappeared- and this despite the
best intentions and a deliberate attempt to shield the Indians from disease 

as well as other risks of outside contacts. [McNeill 1976: 204]

Clearly, this would not be a difficult story to "
grow

" in our model. A

healthy tribe of agents, their immune systems 
"tuned" to cope with a

familiar pool of diseases, would suffer this fate if confronted with a suf-

fidently novel infection . The immune systems simply would not be able
to code for the new strain before it takes a terrifying toll .
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Themain point of the preceding chapters is simply this : A wide range

of important sodal, or collective, phenomena can be made to emerge from the

spatio-temporal interaction of autonomous agents operating on landscapes under

simple local rules.

Summary

Let us review some of the main results. Using only the rule of gradient
search (M from Chapter II ) all sorts of things emerged on the sugarscape

: the principle of carrying capacity, waves of agents propagating
in directions unavailable to the individuals, highly skewed wealth distributions

, and migratory behavior- all from the same simple local rule.

Then~ in Chapter ill we saw that a wide range of population trajectories
was produced by a simple sex rule, S; that culture rule K was sufficient

to "grow
" 

spatially segregated 
"tribes"

; and that combat rule Ca yielded
a range of conflict modes. Finally, when rules were combined, an entire

proto-history unfolded on the sugarscape. By adding a second commodity 

in Chapter IV, we were able to grow simple markets. Results resembling 

general economic equilibrium were obtained using completely
decentralized, bilateral trade rules, that is, without a Walrasian auctioneer

. But, the near-equilibrium behavior was shown to rest heavily on

neoclassical assumptions of fixed preferences and infinite lives. When

the textbook assumptions were relaxed, the economy was pushed further 

from equilibrium . From a policy standpoint, the analysis raises deep

questions as to the allocative efficiency of unregulated markets. While

trade generally increases the carrying capacity of the environment , it can

also increase wealth inequality ; in this sense, there is a tradeoff between

equity and efficiency. The statistical equilibria that do emerge are accom-

panled by horizontal inequality, vitiating the welfare theorems of general 

equilibrium theory. Finally, in Chapter V, we modeled the evolution

of individual immune sytems, as infectious diseases were passed
from agent to agent. Fundamental immunological and epidemiological

�

Conclusions

�



phenomena such as immune memory and the persistence of childhood
diseases both emerged naturally from the model. And connections
between disease process es and other sodal phenomena, of the sort discussed 

by McNeill [1976], were made.

Emergent Society

Over the preceeding chapters, we have built agent rules of movement,
sexual reproduction, cultural transmission, group membership, trade,
inheritance, credit, immune response, and disease propagation. As a culminating 

run let us turn all these rules "on" at once, and see what artificial 

society results. It will be a society of considerable complexity, with
many interacting spheres of activity. But, we have also developed scientific 

instruments allowing us to view various "slices" of the whole .
Indeed, in animation VI- I you will see the following , listed in the order
in which they appear: 

I

1. Top-down view of agents hiving the sugarscape, colored red if diseased
, blue if disease-free;

2. Social networks of neighbors;
. 3. Sugar wealth histogram;

4. Spice wealth histogram;
5. Lorenz curve and Gini coefficient for total wealth;
6. Population time series;
7. Age histogram;
8. Genealogical networks (family trees);
9. Cultural tag histogram;

10. Network of friends;
11. Average price time series;
12. Price standard deviation time series;
13. li "ade volume time series;
14. li "ade network ;
15. Spatial credit network ;
16. Hierarchical credit network ;
17. Disease time series;
18. Disease transmission network .
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1. Users of the CD-ROM will get a flavor of the Sugarscape software system as a
"vinual user" selects various menu items.



Animation VI-I. Evolution
{M, S, K, T, LIO,IO,E})
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These are different perspectives on the same artificial society, with everything 

going at once.

As noted in Chapter I, many have bemoaned the artificial decomposition 
of social science into separate disciplines- economics, demography,

cultural anthropology, politics, even epidemiology. Yet, there has been

noNnatural methodology
" for studying these phenomena in a unified

way. Some social scientists have taken highly aggregated- top-down-

mathematical models of national economies, political systems, and so on

and have Nlinked" them, yielding megamodels that have been criticized

on a variety of grounds.2 
Unfortunately , attacks on particular models can

have the effect of discrediting interdisciplinary inquiry itself.

Interdisciplinary research remains crucially important , and bottom-up

modeling offers an alternative approach. As we have demonstrated, in

an agent-based model each individual can have a variety of behavioral

rules, and these can all be active simultaneously. When such multifaceted 

agents are released into an environment in which (and with which )

they interact, the resulting society will - unavoidably- couple demogra-

phy, economics, cultural change, conflict, and public health. All these

spheres of social life will emerge- and merge - naturally and without

top-down specification, from the purely local interactions of the individual 

agents. Because the individual is multifaceted, so is the society.

The fixed coefficients of aggregate models- such as fertility rates or savings 

rates- become dynamic, emergent entities in bottom-up models.

Indeed, had agent-based modeling been possible in the days of Thomas

Robert Malthus, one wonders whether the fields of economics and

demography would have developed ~o separately. In any event, the new

techniques offer arresting demonstrations of how misleading the standard 

social science boundaries can be. Before giving a more focussed

example of this, let us conduct a gedanken experiment.

Imagine that, instead of beginning the run with all behavioral rules

turned on, as in the example above, we had continuously displayed a

single variable- total population , for instance- while sequentially turning 

on each behavioral rule. At the outset, only the movement rule

would be operative, and we would see the population plot descend from

its initial level to the carrying capacity level. But then, if we turn on sexual 

reproduction the population will grow. If we then turn on diseases it

158 CONCLUSIONS
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2. For example, see Simon [ 1990] and Nordhaus [1992] .



will initially fall .3 If we then turn credit on it will rise.4 Quite dearly, we
will see major perturbations in the population trajectory as we turn on
each new behavioral rule. Indeed, this should be rather humbling to
those who would attempt to study 

I 
Idemography

" in isolation from other 

spheres of social activity.

In particular, is it sensible to study long-range population dynamics as

though economic structure were irrelevant? Although you can probably
guess our answer, we offer the following , especially arresting, demonstration 

of the point .
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3. Some agents die under the increased metabolic demands of disease.
4. Credit augments agent fertility.

Indecomposability

The demonstration compares two evolutions of the same sodety: In one
the agents do not trade while in the other they do. Sodety consists of an
initial population of 500 agents inhabiting Chapter I V

's sugar and spice
landscape. The agents follow movement rule M and reproduce according 

to S. In the first run there is no trading. This population crashes, as
shown in animation VI-2.

Next, with everything exactly as it was in animation VI-2, we make
one simple change: We turn trade rule T on. How will this affect the history 

of sodety? Will it still crash? Will it fall monotonically to some positive 
steady state? Will sodety grow to some carrying capadty? The

answer is given in animation VI-3.

And the correct answer is: None of the abovellnitially , the population
declines as in the no-trade case. Indeed, a statistidan confronted with a
time series for the first seventy-five years would likely project a repeat
of that case. But sodety pulls out of its demo graphic nose dive and

begins to grow. Indeed, it rises to a level more than twice that of the initial 

population . And then something even more surprising happens- a

pattern of sustained oscillations sets in . Notice that the minima of these
waves are still, at 700 agents, well above the initial population level.
However, it is the period of the osdllations that is more interesting. The
distance .between peaks is roughly 115 years. The maximum lifetime of
an agent, by contrast, is eighty years on average. In effect, no individual

experiences the sodal pattern, the full cycle. Here, then, is an emergent
sodal pattern, involving an Nintergenerational

" collaboration of agents,



none of whom actually experiences the collective phenomenon.5

In light of these results, is it sensible to study long-range population

dynamics in an economic vacuum, as though changes in economic

structure had no effect on demo graphics? Quite clearly, the answer is

no. llirning trade on made a dramatic difference in the population
d llamics , so dramatic that it raises questions as to the very feasibility of

a separate science of demography, that is, demography without some

specification of economic regime.

As discussed in Chapter I, social science is hard because, among other

things, cenain kinds of experimentation are hard. As a case in point , in

the real world we cannot command all agents to stop and stan trading in

Population Extinction under Rules ({GI), {M, S})Nwnber of Agents600400300200100 0
Time

�

5. The same point applies to the population oscillations of Chapter m.

Complexity and Policy

In complex systems there may be highly indirect and counterintuitive

ways to induce social outcomes from the bottom up. Combinations of

small local refonns- "
packages

" 
exploiting precisely the nonlinear inter -
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Animation VI -2.

order to gauge the effect on demo graphics of various trade regimes . But

we can do this in agent -based models like Sugarscape. Obviously , the

results depend on the model
'
s particulars . But the mere fact that trade can

have the effects displayed above suggests that economic policy can be a

kind of population policy . At the very least, artifidal sodeties raise important 

policy questions . And they may help answer some of them .



Animation VI-3. Near-Extinction
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connectedness of things- may result in desirable outcomes in the large.

Complexity beckons us to think this way.

Some Extensions of the Current Model

Overall, the agent-based approach- greatly fadlltated by object-oriented

programming and the explosive growth in computer perfonnance- may

yield a new, more unified and evolutionarysodalsdence, one in which migrations

, demo graphic patterns, tribes and tribal conflict, epidemics, markets

, firms, institutions , and governments all emerge from the bottom

up. We see Sugarscape as a step in that direction. From here, there are

many directions in which one might proceed. We have made preliminary 

steps in several of these directions and describe them presently.
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Rule Ecologies and the 
"
Fitness

" 
of Maximization

Mathematical sodal sdence generally adopts two assumptions. First,

.agents can have different utility functions, but each agent
's is fixed.

Second, every one is assumed to be doing the same thing with its particular 

utility function- for example, maximizing it or maximizing its expected 
value. But across agents this behavioral rule is taken as invariant . In

reality, of course, neither assumption makes much sense. In Chapter IV

we relaxed the first of these assumptions, allowing individual utility functions 

to change due to cultural evolution (tag-flipping). But we did not

explore the second assumption. In fact, anifidal sodety models pennit a

more evolutionary outlook: Instead of assuming one behavioral rule,

there could be a population of rules in sodety. One might spedly this rule

population at the outset [Arthur 1994] or have agents invent their own

rules using genetic algorithms, genetic programming, or neural networks.

But, however one generates the rules, some rules enjoy differential survivability 

over others - after a long time one observes more agents following
rule i than following rule j . This really is all we can operationally mean

when we assert that rule i enjoys a selective advantage over, or is llfitter

than,
" rule j . A rule that enjoys a selective advantage over competitors in

one environment may not enjoy that advantage in a different environment 

[Arthur etal., 1994]; and crudally, the interaction of the agents- the

ecology of rules - <onstantly changes the environment. We have every
reason to believe, moreover, that this coupling between agents and their



6. A panicularly powerful example of this occurs in the model of Ackley and Littman

[1992] in which they populate their anifidal world with a group of very capable but

fiercely competitive agents and find that the population stays small and eventually goes
extina . When less capable agents are released into the same environment , their population 

rises and lasts indefinitely .
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environment is a highly nonlinear one. It may be that some rule - lieat all

you can today
" - does extremely well for a long time, but then suddenly

induces a radical transformation of its environment. And in that new
environment that same rule may be highly maladapted.6 The picture,
then, is a co evolutionary one:

. Agent sodety represents an evolving rule ecology;

. The rule ecology constantly restructures its environment ;

. The environment selects among rules and thereby restructures

agent sodety;
. The process repeats.

There is a co evolution of agent sodety (the ecology of rules, pheno-

types) and its environment . Now, it may well be that in some environments 
the rule I Imaximize individual utility (for example, sugar intake)

in the current period
" 

enjoys a selective advantage over other rules. But
there seems to be little basis for asserting this as a general law.

A Definition of 
"
Sustainability

"

In this context, when people say that some behavior- a rule- is l Iunsus-

ta inable,
" 

they mean that continued operation under the relevant
behavioral rule will transform the environment - perhaps quite suddenly 

and irreversibly- into one that is highly inhospitable to agents obeying 
that rule. If rule adjustment is slow in coming, then catastrophe,

even extinction , can result. If all fishermen maximize profit in the current 

period, do they so deplete the fish stocks (transform their environment

) that they ultimately suffer bankruptcy- economic extinction ?

Agents fishing in a different marine ecosystem who adopt some other
rule may enjoy a long-term selective advantage. Admonitions that the
human race is I Idriving without headlights

" or I 
Idriving off cliffs" are

analogies to this son of outcome. The deep point is that our rules create
the cliffs we drive off. Computational systems such as Sugarscape can offer
I I headlights,

" if you will , by pemlitting us to project, however crudely,
the evolutionary consequences of cenain rules. In any event, one exten-



Artificial Agents + Real Landscapes = Hybrid Models

In all of the foregoing discussion we have been talking about

autonomous adaptive agents interacting in, and with , a completely artificial 

environment , that is, one that follows rules that we devise. It might
be instructive to put the agents in a "real" environment - that is to say,

a physically realistic environmental model. When the agents emit apol -

lutant it might be fed into an air-quality model, or ground water toxifi -

cation code, which would feed back into the agents
' 

subsequent
behavior; and so on. Such systems could be quite useful in alerting us to

counterintuitive , nonlinear effects (good and bad) of various regulatory

policies or technological changes.

Computational Archaeology

With artificial agents in a simple environmental model it might be possible 
to grow a history that mimics the true history of some ancient tribe

as it migrated in response to environmental changes. At the time of this

writing , we are collaborating with archeologists at the Santa Fe Institute

and the Tree Ring Laboratory at the University of Arizona on a project
whose aim is to grow the population dynamics and settlement patterns
of the Anasazi from 400 to 1400 AD in the Long House Valley area of

Black Mesa,7 
using environmental and demo graphic data reconstructed

by archeological methods.8

Surely, viewing the development of artificial society modeling techniques 

from an evolutionary point of view, it makes more sense to stan

with relatively simple forms of production and organization than to

attempt to "grow
" New York City circa 2000 AD. And frankly, if, from a

policy standpoint, we are worried about the combined effects of explosive 

population growth and rapid environmental change in the developing 

world , doing so is probably more useful in any case.

Ultimately, one would like to see if wage labor, firms, elaborate production 
hierarchies, and various forms of specialization (division of

7. In nresent -dav nonheastem Arizona .. .
8. Other agent-based models in archeology include the Mesa Verde Region Project

[Gumerman and Kohler, 1996] and the EOS Project [Doran et al., 1994] .
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sion of the present work is to study the co evolution of rule ecologies and

their environments .



Other Artificial Societies

A Variant of Schelling
'
s Segregation Model

In Chapter I, Thomas Schelling
's simple model of segregation [Schelling

1969, 1971a, 1971b, 1978] was mentioned as an early andpresdent exam-

pIe of agent-based modeling in the sodal sdences.9 He created both one-

and two-dimensional landscapes populated with agents of two distinct
I Icolors,

" and studied how micro-level agent preferences for like-colored

neighbors manifested themselves at the macro-level. He posed various

questions. What is the connection between individual prejudice and

observed patterns of spatial segregation? Is it possible to get highly segregated 
settlement patterns even if most individuals are, in fact, color-blind?

We have implemented a variant of Schelling
's model. Most aspects of our

model are identical to his: every agent is a member of one or another group

(here either Red or Blue) and has a fixed preference for like-colored neighbors
. Here, a preference is simply a minimum percentage. For example, a

Blue agent might insist that at least half of its neighbors also be Blue; in that

case, its preference would be 50 percent. Each agent
's behavior is governed

by the following rule.

Schellin~
's a~ent movement rule:

. The agent computes the fraction of neighbors who are its own

color;
. If this number is greater than or equal to its preference the agent

is considered satisfied, in which case end, else continue;
. The agent looks for the nearest unoccupied lattice site that satisfies 

its preference and moves there.
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In the proto-history of Chapter ill we Ngrew
" Red and Blue tribes

through cultural tag-flipping . But, the artificial societies approach lets us

study social pattern formation in many other ways. We provide two

examples below.

�

9. For recent discussions of this model see Binmore [1992: 393- 95], Casti [1994:

213- 15], and Krugman [1996: 15-21].

labor) can be made to emerge in agent-based models. But, in the near

term we would be happy with far more modest results.



Some aspects of our implementation are slightly different from

Schelling
's: He uses the Moore neighborhood, whereas we use the von

Neumann neighborhood; he moves agents to the nearest satisfactory site,
whereas our agents simply select an acceptable site at random; his landscape 

has a finite boundary, whereas ours is a torus.Io

As a first example of this model we randomly populate a 50 x 50 lattice 

(2500 sites) with 2000 Red and Blue agents in approximately equal
numbers. This amounts to leaving 20 percent of the sites vacant. Each

agent wishes at least 25 percent of its neighbors to be of its own color.

Initially , many agents will be dissatisfied with their (randomly assigned)
location. Each agent executes the rule above. The movement of an agent
to a new location can make its new neighbors dissatisfied. Those who
are newly dissatisfied are then permit ted to move, and so on. This

process repeats until all agents are satisfied, and so no further movement
of agents occurs- that is, an equilibrium state is reached. A typical run
is displayed in animation VI-4. Notice that the final configuration is significantly 

less random- more segregated- than the initial one.
Next, we sophisticate this simple model somewhat. The final quiescent

state of animation VI -4 results from, in effect, infinite agent lifetimes:
Once an equilibrium configuration is reached there is nothing to perturb
this state. By making the maximum agent lifetime finite , so that agents
depart the landscape once they have been there some length of time, the
settlement pattern changes perpetually, never settling down .

In animation VI - 5 all agents want at least 25 percent of their neighbors 
to be of their own color, as in animation VI -4, but now all agents

are given a randomly assigned maximum lifetime between 80 and 100
time periods. I I Once an agent reaches its maximum age it is removed
and the population is kept constant by repladng it with a new agent of
random color. This agent is placed at a randomly selected position satisfying 

its preference for neighbors.

Note that the long-run pattern of segregation is different from that
shown in animation VI-4, but the degree of segregation is comparable.

Now we increase agent preferences for like neighbors and see how this
affects the overall pattern of segregation. In particular, giving all agents
the preference that at least 50 percent of their neighbors be of their own
color, animation VI-6 results. Although every agent will tolerate config-

10. Neighborhood defmitions were given in the neighbor networks section of Chapter ll .
11. Here, Nmaxirnum lifetime N is interpreted as the point at which an agent deddes to

move to another landscape altogether; maximum residence duration is an equivalent notion.
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Animation VI -4 . Typical Evolution of the Schelling Model with

Agents Demanding at Least 25 Percent of Like Neighbors



�

�
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Animation VI -5. Typical Evolution of the Schelling Model with

Agents Demanding at Least 25 Percent of Like Neighbors and

Maximum Lifetimes Uniformly Distributed between 80 and 100
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Animation VI -6. Typical Evolution of the Schelling Model with

Agents Demanding at Least 50 Percent of Like Neighbors and

Maximum Lifetimes Uniformly Distributed between 80 and 100



urations in which fully hall of their neighbors are not of their own color,
a high degree of segregation results, far higher than in the previous runs.

Outcomes of this type- in which a relatively small change in individual 

preferences leads to a large change in macro segregation patterns -
were discovered by Schelling using little more than a checkerboard and
rolls of pennies and dimes. Schelling also studied the effects of absolute

population size, differing Red-Blue relative population sizes, and

unequal inter-group preferences. One thing he did not study, however,
is the effect of intragroup preference heterogeneity; this is hard to keep
track of when iterating the model by hand. But it is easy to implement
heterogeneous preferences and study their effects in a computer model
where each agent is a distinct object. As a final example, then, we distribute 

agent preferences for like neighbors uniformly between 25 percent 
and 50 percent. This adds more tolerant individuals to the previous

run . Will the final picture more closely resemble the modestly segregated 
outcome of animation VI-5, or the more completely segregated society 
of animation VI-6? Animation VI-7 provides the answer.

Adding this degree of tolerance is not sufficient to generate desegregation
- indeed, a highly segregated pattern endures.

Now, had you been shown this temlinal pattern- the already emerged
phenomenon- of segregation, you might well have concluded that virtually 

every agent had demanded that all neighbors be of its color. Not
Soi The question, then, is this: How little racism is enough to Ntip

" a society 
into this segregated pattern? In turn , is racial segregation reversible

through Ninvasion" by a handful of Ncolor-blind " individuals? How
much does it take to Ntip

" 
things the other way? Do these simple models 

help explain why we are so often surprised by the true preference
landscapes- for example, the Serb-Bosnian one- that burst forth when

suppressive institutions are suddenly dismantled?

If we want to understand political change, we need ways to study the
Nmatch" between political institutions and the underlying preference

landscapes. When the.match is good, there is political stability, but when
the match is bad, frustration accumulates and there can be sudden

releases of conflictual energy.

Ring World is yet another artificial society. Here, the landscape is a circle

of sugar sites. The agents are once again sugar harvesters, but their rules
of behavior are simpler than in Sugarscape. First, agents search only in
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Animation VI -7. Typical Evolution of the Schelling Model with

Agent Demands for Like Neighbors Uniformly Distributed between

25 Percent and 50 Percent, and Maximum Lifetimes Unifom1ly

Distributed between 80 and 100



the counterclockwise direction on the sugar ring. Each agent has vision

randomly chosen from some range (15 to 30 in the animations here).

Subject to these strictures, the agent rule is: Inspect all unoccupied sites
within your vision, select the nearest site with maximum sugar, go there and eat
the sugar. As for the ring, there are 150 sites. Initially , the sugar level is
distributed randomly between values of 0 and 4, and 40 agents are distributed 

randomly around the ring. The rule for the sites is that sugar
grows back at unit rate to a capacity value, which is 4 in the animations
below. There is no death, birth , combat, cultural transmission, disease,
or trade; no attention is paid to sugar accumulation. Each agent moves
once each time period; agents are called in random order. What could

possibly happen? The answer is given in animation VI-B.
Remark ably, the agents cluster into groups. Often they separate into

groups of comparable size! Notice, moreover, that agents who are hop-

ping along quite slowly are ultimately absorbed, swept up, into faster-

moving groups. They move faster when they are pan of a group. Now,
let us playa familiar game. Imagine that the rules these agents are executing 

had not been stated in advance and that you had been shown this

emergent 
"
flocking

" behavior and were asked, 
"What are the agents

'

rules?" Most people would offer rules explicitly including something
about other agents or groups; for example, 

"
join the smallest cluster that

is surrounded by sugar,
" or perhaps some other rule of this son.

However, the seemingly 
"social" behavior (the clustering) is not driven

by any social impulse but is solely a product of the agent-environment

coupling.

Here we staned with agents randomly distributed and they agglomerated 
into cliques. What if we stan with all agents in one megagroup (of

40)? Will they disaggregate into like-sized cliques? 12 The answer is "yes,
"

as shown in animation VI-9.

A notable propeny of social organizations- from ant colonies to the

Supreme coun - is that their memberships change while important elements 
of their structure do not . The groups that fonn on the ring have

this "organizational
" 

propeny, albeit in . a simple fonn ; their agent composition 
is fluid while their outstanding structural feature- their sizeis 

approximately constant.
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12. We thank Bruce Blair for this question.
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Analysis

To understand the basic clustering phenomenon, imagine the same sugar 
ring, but with a population of exactly two agents, each having vision

of 10, say. Suppose these two agents stan out as neighbors, a clique of
two . And to make the idea as clear as possible, imagine that all sugar
sites grow back to a value of 4 once all agents have moved. Will this

clique stay together? Stan with the "follower ." It looks out 10 sites counterclockwise

, disqualifying the immediately adjacent site since it is occu-

pied, and notes that (since they all have sugar value of 4) the nearest

unoccupied site with maximum sugar is the one just in front of the
"leader." So, it 

"
leapfrogs

" to that site and eats the sugar. Of course, the
former leader now becomes the follower and, by the same argument,
does the same thing . So the two of them "tread" around the ring, perpetually 

leapfrogging one another along the way. When the "leader"

moves first it moves just one site forward . But when the "follower "

moves it will jump to the site immediately ahead of the "leader" since
that is the first site having maximum sugar. So we see from first principles 

that the agents do stay together once they (randomly ) encounter
one .another.

13 Now consider a threesome. It is easy to see that the same

thing occurs with three agents as with two . This holds all the way up to
N agents, where the maximum value of N is related to the vision of the
most nearsighted agent in the group. The size of a group is constrained

by the requirement that the most nearsighted be able to see to the front
of the group when it is that (most myopic) agent

's turn to move. This,
in turn , is the reason the megacluster of fony agents (none of whose
vision is fony ) breaks up!

This is also how agents that are loping along by themselves get swept
up into faster-moving clusters. An agent with vision of, say, 10 is hop-

ping along by itself when along swoops a flock of five agents, which

glides right over it . Now, suppose this lone agent
's turn comes up precisely 

as the flock passes by, so that the nearest best unoccupied site it can
see is exactly at the head of the flock. The agent then leapfrogs to the
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13. This simple exposition is written as though agents take turns moving. Actually, in
Ring World, the call order is randomized each time through the agent list. Under random
call order, gaps can open between agents. Hence, the more precise statement is that if
agents are observed to tread around together then it is a result of the leapfrogging mechanism 

described in the text. While couplings between particular agents can break down
under random call order, clique formation itself is not artifactual; it is robust to random-
ization of the call order.



head of the pack, and thereafter stays in it- now going much faster than

it had been going alone. This is exactly how groups form in Ring World.

The number, size, and permanence of groups is, however, sensitive to

the distribution of sugar capacities on the ring and the distribution of

vision in agent society. In some cases, essentially no groups form . By
contrast, under certain configurations, a few wildly fast groups race

around, intermi ~tently 
"
shedding

" 
agents, while cascades of slower

metastable cliques take shape and dissipate. All this from such a simple
model! This serves as yet more evidence of the fertility of the artificial

societies approach.

At various points we have offered detailed quantitative analyses of data

generated in the Sugarscape model- data on prices and wealth distributions

, for example. The ability to generate noiseless data is a powerful feature 

of artificial societies. In addition to this kind of empirical study, it is

desirable to pursue formal analyses- outright theorems and proofs-

where possible. While the exact evolution of individual agents and sites

seems analytically intractable, certain probabilistic analyses are possible.

For example, when our model is specialized to an environment of randomly 

distributed resources and fixed agent density, the distribution of

the number of neighbors that the agents have can be detemlined analytically 

from first principles. Then, for sites having capacities varying in

accord with a known distribution function , it is possible to calculate the

equilibrium distribution of resource levels when the number and types

of agents are known . From this information , the equilibrium distribution 

of agent income can be detemlined . When the income distribution

is combined with initial endowment and age distributions, a distribution

of wealth can be deduced. It is also possible to describe various aspects

of cultural tag-flipping relating to the overall distribution of tags. When

a second resource is added to the landscape and agents move according

to a wealth -dependent welfare function , the distribution of wealth

implies a distribution of marginal rates of substitution of one resource

for the other. Finally, when agents are pemlitted to trade one resource

for the other, an expression for the distribution of annual trade volume

and annual price can be derived from the previously calculated distributions 

for the number of neighbors, wealth, and MRS.

However, this is a highly special case. When the environment is struc-
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Generative Social Science

It may be useful to enter into a brief philosophical discussion. From an

epistemological standpoint, what "son of sdence" are we doing when
we build anifidal sodeties like Sugarscape? Clearly, agent-based sodal
science does 'not seem to be either deductive or inductive in the usual
senses. But then what is it? We think generative is an appropriate tenn .
The aim is to provide initial microspedfications (initial agents, environments

, and rules) that are sufficient to generate the macrostructures of
interest.14 We consider a given macrostructure to be "explained

" 
by a

given microspedfication when the latter's generative suffidency has
been established.15 As suggested in Chapter I, we interpret the question,
"can you explain it?

" as asking
" can you grow it?

" In effect, we are proposing 
a generative program for the social sciences and see the artificial society as its

principal scientific instrument.

We hope the potential power of the anifidal sodeties approach has
been demonstrated. At the same time, it is important to consider the

potential limits - both practical and theoretical - intrinsic to this

approach. At the time of this writing the practical upper limit on the
number of agents which extant computer hardware is capable of simulating 

is on the order of 105_107 when the agents have relatively simple
behavior and as low as 102_104 when agent behavior is even modestly
complex. While this situation is sure to improve, it may be a long time
before simulation with large numbers of complex agents is feasible.

14. Of course, we may also be interested in generating future agents, so initial

microspecifications may be required to generate later microstates. Generative is the point ,
not macro, per se. We use the term in much the same way Chomsky does. As Casti
explains, 

"the grammar of each language must be generative in the sense that it must be a
set of rules capable of "generating 

W all the well -formed (i .e., grammatical) sentences of the

language and none of the ill -formed ones.W Casti [1989: 215] .
15. As just noted, some such demonstrations take the form of outright proofs. Others

take the form of simulations. There are various levels at which generative sufficiency can
be established; see Axtell and Epstein [1994].

tured (not random), when sex is "on" 
(and agent density is fluctuating ),

when diseases, combat, culture, and credit are active, then analytical
results are much harder to come by. It is our hope that, ultimately , interesting 

artificial societies will inspire the development of entirely new formal 
methods of analysis.

�



A deeper issue for sodal sdence is that there may be theoretical limits

to what is knowable in such computational sytems as artificial sodeties.

These limits will have to do with computability, deddability, NP completeness
, and other properties of algorithms, active areas of research in logic,

computer sdence, and automata theory generally. For example, it is

known that the computational task of a Walrasian auctioneer- computing 
a Brouwer fixed-point- has worst case complexity that is exponential 
in the number of commodities.16 In some areas, it may be that

simulation really is the best we can do.17

Looking Ahead

Just as the community of biologists had to learn to fully exploit the

microscope when it was first invented, so we have only begun to explore
the uses and limits of the artifidal sodety as a sdentific tool . We can only

hope that the field itself will display the evolutionary process it studies-

new agents join , and intellectual heterogeneity grows; sodal networks

of sdentists endogenously take shape;
18 selection pressures operate; and

from the sodal enterprise of agent-based sodal sdence, interesting

things emerge!

16. Scarf [1973] conjectured that typical nmning times for the computation of Walrasian

equilibria is O(n4), where n is the dimension of the commodity space. That the worst case per-

fomlance is exponential in n is proved in Hirsch, Papadimitriou, and Varasis [1989].

Subsequently, Papadimitriou [1994] has pointed out that existence of Brouwer and Kakutani
fixed points- and thus Walrasian equilibria- is established by constructive arguments based on

exponentially large graphs, and has characterized these problems with new complexity classes.
17. For example, Buss, Papadimitriou, and Tsitsiklis [1991] have studied systems of

identical automata coupled through a global control rule. They find that when rules are

anonymous (do not depend on the state of any particular automaton) then the system is

predictible. However, when the global rule is nonanonymous then the future state of the
-system is PSPACE complete, and there is a very real sense in which simulation constitutes
the best analysis possible for such systems.

18. Various developments can fadlitate this. Standards can simplify code sharing and
inter-model comparison. When objects from one model can be imponed into other models

, "
docking experiments

" of the son reponed in Axtell et al. [1996] are facilitated.
General purpose agent-based development environments, such as the Santa Fe Institute's
SWARM, may also expand the community of agent-based modelers.
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Here 

we briefly describe some software engineering aspects of the
artificial society known as Sugarscape. This artificial world is composed 

of two main elements: a population of agents and the environment 
on which the agents 

I Ilive." Of the many ways in which these

might be implemented in software, we have found object-oriented programming 
(OOP) to be a particularly natural development environment

for Sugarscape specifically and artificial societies generally. Each object
in OOP has both internal states, called instance variables, and behavioral
rules, so-called methods. I Agents as well as individual environmental
sites are objects in Sugarscape.

The sugarscape proper is implemented as a two-dimensional array of
sites. Each site object has among its instance variables its current resource
levels and capacities (both n-dimensional vectors, where n is user-speci-

fied), its pollution levels and fluxes (both m-vectors, m specified by the
user), and a reference to its occupant (a pointer to an agent object2). It
also has methods for resource growth, pollution deposition and transport
(for example, diffusion), and visual display. Each site's methods use information 

contained in its instance variables, and possibly state information
from neighboring sites. For example, Chapter I I

's pollution diffusion rule

requires that each site get information from its von Neumann neighbors
in detennining next period

's flux . This coupling of sites through methods 
makes the sugarscape a cellular automaton.

The environment as a whole, the sugarscape lattice, is also implemented 
as an object. It has instance variables concerning the overall

1. For an introduction to OOP, see Booch [1994].
2. The Sugarscape code was developed on the Madntosh, and due to the way the Mac

operating system deals with memory, so-called Nhandles N 
(pointers to pointers) are actually 

used instead of pointers whenever one object must refer to another object.

�
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3. The reader unfamiliar with linked lists
see Sedgewick [1983: 25- 28]

should

�

consult any book on data structures;
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state of the sites (average resource and pollution levels, for example),
and methods for computing these statistics.

Agents are also objects. Instance variables for agents include vision,
metabolism (an n-vector), location (pointer to a site object), resource

accumulations (an n-vector), current age, ages related to childbearing

(puberty age, for example), death age, identity of parents (pointers), cultural 

tags (a binary string), and an immune system (a binary string).

Agent objects are maintained in a linked list and so each agent also has

pointers to neighboring agents in the list.3 Furthermore, when agents
are ranked, as from poorest to richest in the computation of a Gini coefficient

, these rankings are kept in a linked list and so each agent has

pointers to neighboring agents in the ranked list. Each agent has further

instance variables that are pointers to list objects, such as its list of children

, a list of friends, lists related to borrowing and lending, and a list of

diseases with which it is afflicted. Agent methods include all behavioral

rules (movement, pollution production , sexual reproduction, inheritance

, cultural transmission, group membership, combat, trade, credit,
immune response, disease transmission) as well as related procedures

(for example, the welfare and MRS functions). Other methods include

specialized routines for agent display. In total, each agent has over 100

methods.

The reader familiar with OOP might wonder how this large agent

object is actually declared. There is a definite sense in which Chapter il
's

simple agent, who does little more than move and pollute, can be used

as a superclass for definition of Chapter Ill
's sexually reproducing agent.

That is, we might define a "Chapter ill Agent
" as a descendent of the simple 

"
Chapterl I Agent,

" with the former inheriting all of the latter's

instance variables and methods. Then Chapter I V
's trading agent would

be a descendent of the "
Chapterl I I Agent

" and so on. This design was

explored but efficiency considerations led us to the less elaborate design
of a single agent class specification.

There is also an object for the population of agents as a whole . It has

instance variables relating to aggregate population statistics (average age
and fertility , minimum agent wealth, and maximum inheritance gift, for

example) and methods for computing these. It also keeps track of the

first agent in the overall agent list as well as the highest and lowest
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ranked agents in the ranked list. The agent population object also encapsulates 
methods for sorting and searching the agents according to any

one of various criteria. Given that the population is constantly changing
due to agent birth and death, it was found that a primitive kind of census 

was needed to keep track of the agent population , and both census

information and survey routines are pan of this larger population object.

Many other object definitions exist in the Sugarscape software, including 

objects for special agents (representative and observational agents,

for example), agent and site groups (such as all Blue agents and all sites

in the southwest), graphs (social networks), and plotting (histograms,

time series, supply-demand plot ). The modularity afforded by these and

many other objects was crucial to managing the complexity of the

20,000 lines of code that make up Sugarscape.



Summary of Rule Notation

S! lDbol
Ga

Name

Sugarscape growback

Appendix B

Agent movement

R [a.b] Agent replacement

S(l~'Y Seasonal growback

Pn.x Pollution fonnation

182

Definition
. At each lattice position, sugar grows
back at a rate of a units per time interval

up to the capacity at that position.

. Look out as far as vision pennits in each
of the four lattice directions, north , south,
east, and west;
. Considering only unoccupied lattice

positions, find the nearest position producing 
maximum welfare;

. Move to the new position;

. Collect all the resources at that location.

When an agent dies it is replaced by an

agent of age 0 having random genetic attributes
, random position on the sugarscape,

random initial endowment, and a maximum 

age selected from the range [a,b] .

Initially it is summer in the top half of the

sugarscape and winter in the bottom half.
Then, every 'Y time periods the seasons

flip - in the region where it was summer it
becomes winter and vice versa. For each
site, if the season is summer then sugar
grows back at a rate of a units per time
interval; if the season is winter then the

growback rate is a units per ~ time
intervals.

For n resources and m pollutants, when n-

dimensional resource vector r is gathered
from the sugarscape then m-dimensional

production pollution vector p is produced
according to p = Dr, where n is an m x n
matrix; when n-dimensional (metabolism)
vector misconsumed then m-dimensional

consumption pollution vector cisproduced



according to c = Xm. where X is an m x n

mattix. (This generalizes the rule given in

Chapter ll .)
. Ead1 a time periods and at ead1 site, compute 

the pollution flux- the average pollution
level over all von Newnann neighboring sites;
. Ead1 site's flux becomes its new pollution
level.

. Select a neighboring agent at random;

. If the neighboring agent is of the opposite
sex and if both agents are fertile and at least

one of the agents has an empty neighboring
site then a newborn is produced by crossing-

over the parents
' 
genetic and rultural diarac-

teristics;
. Repeat for all neighbors.

When an agent dies its wealth is equally divided 

among all its living children.

. Select a neighboring agent at random;

. Select a tag randomly;

. If the neighbor agrees with the agent at that

tag position, no d1ange is made; if they disagree

, the neighbor's tag is llipped to agree
with the agent

's tag;
. Repeat for all neighbors.

Agents are defined to be members of the Blue

group when Os outnwnber Is on their tag

strings, and members of the Red group in the

opposite case.

Combination of "agent cultural transmission"

and "agent group membership
" rules given

immediately above.

. Look out as far as vision pernlits in the four

prindpallattice directions;
. Throw out all sites occupied by members of

the agent
's own tribe;

. Throw out all sites occupied by members of

different tribes who are wealthier than the

agent;
. The reward of ead1 remaining site is given

by the resource level at the site plus, if it is

occupied, the minimwn of a and the occu-

pant
's wealth;

. Throw out all sites that are vulnerable to

retaliation;

Agent
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Pollution diffusion

Agent mating

none

Group membershipnone

Agent culture

combat

transmission

Agent inheritance

Agent cultural



. Select the nearest position having maximum 
reward and go there;

. Gather the resources at the site plus the
minimum of a and the occupant

's wealth,
if the site was occupied;
. If the site was occupied, then the former

occupant is considered ilkilled"- perrna-

nently removed from play.

. Agent and neighbor compute their
MR Ss; if these are equal then end, else continue

;
. The direction of exchange is as follows:

spice flows from the agent with the higher
MRS to the agent with the lower MRS while

sugar goes in the opposite direction;
. The geometric mean of the two MR Ss is
calculated- this will serve as the bargaining 

price, p;
. The quantities to be exchanged are as
follows: if p > I then p units of spice for I
unit of sugar; if p < I then I Ip units of sugar 

for I unit of spice;
. If this trade will (a) make both agents
better off (increases the welfare of both

agents), and (b) not cause the agents
' MR Ss

to cross over one another, then the trade is
made and return to stan, else end.

. An agent is a potential lender if it is too old
to have children, in which case the maximum 

amount it may lend is one-half of its current 
wealth;

. An agent is a potential lender if it is of
childbearing age and has wealth in excess
of the amount necessary to have children,
in which case the maximum amount it may
lend is the excess wealth;
. An agent is a potential borrower if it is of

childbearing age and has insufficient
wealth to have a child and has income

(resources gathered, minus metabolism,
minus other loan obligations) in the present 

period making it credit-wonhy for a
loan written at terms spedfied by the
lender;
. If a potential borrower and a potential
lender are neighbors then a loan is origi-
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Agent trade

Ldr Agent credit



nated with a duration of d years at the rate

of r percent, and the face value of the loan

amount is transferred from the lender to

the borrower;
. At the time of the loan due date, if the

borrower has sufficient wealth to repay the

loan then a transfer from the borrower to

the lender is made; else the borrower is

required to pay back half of its wealth and

a new loan is originated for the remaining
sum;
. If the borrower on an active loan dies
before the due date then the lender simply
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Agent immune

response

none

Disease transmissionnone

Agent disease

process es

takes a loss;
. If the lender on an active loan dies

before the due date then the borrower is

not required to pay back the loan, unless

inheritance rule I is active, in which case

the lender's children now become the bor-

rower 's creditors.

. If the disease is a substring of the

immune system then end (the agent is

immune ), else (the agent is infected) go to

the following step;
. The substring in the agent immune system 

having the smallest Hamming distance

from the disease is selected and the first bit

at which it is different from the disease

string is changed to match the disease.

For each neighbor, a disease that currently
afflicts the agent is selected at random and

given to the neighbor.

Combination of "agent immune response
"

and "
agent disease transmission" rules

given immediately above.



Appendix C

State-Dependence of the Welfare

Function

The 
utility function described in Chapter IV is not a traditional one

insofar as its arguments are the wealths of the two commodities, sugar 
and spice. One way to interpret this function is as a state-dependent

utility or welfare function . That is, as the agent accumulates wealth its

preferences, as represented by the utility function , change in asystem-

atic, well -defined way. In particular, a landscape of sugar and spice will
look different in welfare terms to biologically identical agents when the

only difference between them is their wealth . Similarly, an agent facing
id~ntical landscapes at different times in its life- say it was relatively
poor early in its life and relatively prosperous later on- will value them

differently . The way in which the utility function gives rise to this
behavior is formally described in this appendix.

Consider an agent with equal metabolisms (ml = m2) and arbitrary
wealths (WI' W2) and suppose that in its neighborhood the site preferred
above all others has sugar and spice levels (Xl' X2) . Now assume that at
a later date, when it has wealth ( WI' W2), this agent is faced with the
same (distribution of) sites. Under what conditions will it prefer a different 

site?

Theorem : Sites having sugar and spice levels (XI- ~I' X2+~2)' where
~1~2>O, will be preferred to sites having levels (Xl' X2) if

~ Qf: When the agent has wealth (WII W2) the condition that (XII X2)
sites are preferred to (Xl- tdll X2+td2) sites is

.dl
~ -WI> ):J"2(~ - W2)

for .d] and .d2 positive (negative ).

186
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11]
"'J;

for .d2 < o.

Now, for the case of .d2 > 0, consider C.la and C.2a to be inequalities
with (Xl' X2) the unknown quantities; the goal here is to solve for these.

Alternatively , it must be true that the relationship between the six parameters 
of the problem- the four wealths and the two perturbations -

cannot depend on (Xl' X2) . To accomplish this solve C.la and C.2a for Xl
and there results

(WI + XJm'(W2 + X2)m2 > (WI + Xl - il.I)
m'(W2 + X2 + 11.2)m2.

Since we have stipulated that m 1 = m2 this is equivalent to

(WI + Xl) (W2 + X2) > (WI + Xl - 11.1) (W2 + X2 + 11.2) ,

Solving for 11.1 this becomes

~ > (WI + XJ~21 --.. -- . A"W2 +X2 + ~2
this impliesFor 112 > 0

(C.la)

while for 112 < 0

(C.lb)

Later, when the agent has wealth (WI, W2), the (XI- L1I, X2+L12) site is

preferred to the (Xl' X2) site- the opposite of the previous case- and so

it must be true that

(C.2a)

for .d2 > 0 and

(C.2b)
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Consider Xl to be some number, as it will be at any particular site. Then

Xl <~ (W2 +X2 + .d2) - WI
2

.dl
Xl > "K" (W2 + X2 + .d2) - WI-2

.d .d
3: (W2 + X2 + .d2) - WI >3: (W2 + X2 + .d2) - WI.2 2

Example :

Consider an agent for whom m] = m2 and who has wealth (20, 50) at
time t]. Among all sites in its vision the one which it prefers has (sugar,

spice) levels (3, 3). At a later time, t2, with wealth (150, 250) and facing 
the same distribution of sites that it may potentially inhabit , what

types of sites will be preferred to (3, 3)?
Solution: Consider for the moment only sites produced by .d] and
.d2> 0, that is, sites on which there is relatively less sugar and more spice
than (3, 3). Since W2> W2 here, divide both sides of C.3a by (W2 - W2)'

yielding

Now substitute the agent wealths for (WI' W2) and ( WI' W2) in the left
hand side of this expression, giving

these expressions imply that

Since x2 and .d2 appear on both sides of this inequality it can be simpli-

fied to read

WI - WI >~ (W2 - W2). (C.3a)
2

Similarly, when .d2 < 0 there results

WI - WI <~ (W2 - W2). (C.3b)
2

QED
A numerical example that illustrates site switching due to altered

wealth states is given presently.



One feasible pair of .ds is (I , 2). Therefore, sites like (xl- I , x2+2) = (2, 5)
are preferred at the later time.

To check this just plug the numbers into the expression for agent welfare

which implies 23 . 53 > 22 . 55 in the case of equal exponents. This is
indeed true since 1219 > 1210. At the later time the alternative site is

preferred. To see this, one carries out the following calculation
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WI - WI 150 - 20 130 13 .dI-w;-:~ = 250 - 50 = 200 = 20 >~.

W(20 + 3,50 + 3) > W(20 + 2,50 + 5).

Carrying through the calculations

23m/53m2> 22m/55m2

W(150 + 3,250 + 3) < W(150 + 2,250 + 5),

producing

153m/253m2 < 152m1255m2,

which is easily verified as true since 153 . 253 = 38709 < 152 . 255 =

38760. Thus the site (3, 3) is preferred by the agent at time t] and site

(2,5) is considered the better site at time t2. The case of .4] and .42 < 0 is
similar.
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